

Section I. Stratix Device Family Data Sheet

This section provides designers with the data sheet specifications for Stratix devices. They contain feature definitions of the internal architecture, configuration and JTAG boundary-scan testing information, DC operating conditions, AC timing parameters, a reference to power consumption, and ordering information for Stratix devices.

This section contains the following chapters:

- Chapter 1. Introduction
- Chapter 2. Stratix Architecture
- Chapter 3. Configuration & Testing
- Chapter 4. DC & Switching Characteristics
- Chapter 5. Reference & Ordering Information

Revision History

The table below shows the revision history for Chapters 1 through 5.

Chapter(s)	Date / Version	Changes Made
1	April 2003 v1.0	Updated internal and external timing information. Added the "Maximum Input & Output Clock Rates" section.
2	April 2003 v1.0	Updated internal and external timing information. Added the "Maximum Input & Output Clock Rates" section.
3	April 2003 v1.0	Updated internal and external timing information. Added the "Maximum Input & Output Clock Rates" section.
4	May 2003 v1.1	Updated high-speed I/O specification timing.
	April 2003 v1.0	Updated internal and external timing information. Added the "Maximum Input & Output Clock Rates" section.
5	April 2003 v1.0	Updated internal and external timing information. Added the "Maximum Input & Output Clock Rates" section.

Altera Corporation Section I–1

Section I–2 Altera Corporation

1. Introduction

\$51001-1.0

Chapter 1, Introduction, replaces the Stratix Family Data Sheet.

Introduction

The Stratix[™] family of FPGAs is based on a 1.5-V, 0.13-µm, all-layer copper SRAM process, with densities up to 114,140 logic elements (LEs) and up to 10 Mbits of RAM. Stratix devices offer up to 28 digital signal processing (DSP) blocks with up to 224 (9-bit × 9-bit) embedded multipliers, optimized for DSP applications that enable efficient implementation of high-performance filters and multipliers. Stratix devices support various I/O standards and also offer a complete clock management solution with its hierarchical clock structure with up to 420-MHz performance and up to 12 phase-locked loops (PLLs).

The following shows the main sections in the Stratix Device Family Data Sheet:

Section	Page
Features	1–2
Functional Description	2–1
Logic Array Blocks	
Logic Elements	
MultiTrack Interconnect	
TriMatrix Memory	
Digital Signal Processing Block	
PLLs & Clock Networks	
I/O Structure	
High-Speed Differential I/O Support	
Power Sequencing & Hot Socketing	
IEEE Std. 1149.1 (JTAG) Boundary-Scan Support	3–1
SignalTap Embedded Logic Analyzer	
Configuration	
Temperature Sensing Diode	
Operating Conditions	4–1
Power Consumption	
Timing Model	
Software	5–1

Device Pin-Outs	5–	-1
Ordering Information	5–	-1

Features

The Stratix family offers the following features:

- 10,570 to 114,140 LEs; see Table 1–1.
- Up to 10,118,016 RAM bits (1,264,752 bytes) available without reducing logic resources
- TriMatrix[™] memory consisting of three RAM block sizes to implement true dual-port memory and first-in first-out (FIFO) buffers
- High-speed DSP blocks provide dedicated implementation of multipliers (at up to 250 MHz), multiply-accumulate functions, and finite impulse response (FIR) filters
- Up to 16 global clocks with 22 clocking resources per device region
- Up to 12 PLLs (four enhanced PLLs and eight fast PLLs) per device provide spread spectrum, programmable bandwidth, clock switchover, real-time PLL reconfiguration, and advanced multiplication and phase shifting
- Support for numerous single-ended and differential I/O standards
- High-speed differential I/O support on up to 116 channels with up to 80 channels optimized for 840 megabits per second (Mbps)
- Support for high-speed networking and communications bus standards including RapidIO, UTOPIA IV, CSIX, HyperTransportTM technology, 10G Ethernet XSBI, SPI-4 Phase 2 (POS-PHY Level 4), and SFI-4
- Terminator[™] technology provides on-chip termination for differential and single-ended I/O pins with impedance matching
- Support for high-speed external memory, including zero bus turnaround (ZBT) SRAM, quad data rate (QDR and QDRII) SRAM, double data rate (DDR) SDRAM, DDR fast cycle RAM (FCRAM), and single data rate (SDR) SDRAM
- Support for multiple intellectual property megafunctions from Altera MegaCore® functions and Altera Megafunction Partners Program (AMPPSM) megafunctions
- Support for remote configuration updates

Table 1–1. Stratix Device Features — EP1S10, EP1S20, EP1S25, EP1S30											
Feature	EP1S10	EP1S20	EP1S25	EP1S30							
LEs	10,570	18,460	25,660	32,470							
M512 RAM blocks (32 × 18 bits)	94	194	224	295							
M4K RAM blocks (128 × 36 bits)	60	82	138	171							
M-RAM blocks (4K × 144 bits)	1	2	2	4							
Total RAM bits	920,448	1,669,248	1,944,576	3,317,184							
DSP blocks	6	10	10	12							
Embedded multipliers (1)	48	80	80	96							
PLLs	6	6	6	10							
Maximum user I/O pins	426	586	706	726							

Feature	EP1S40	EP1S60	EP1S80
LEs	41,250	57,120	79,040
M512 RAM blocks (32 × 18 bits)	384	574	767
M4K RAM blocks (128 × 36 bits)	183	292	364
M-RAM blocks (4K × 144 bits)	4	6	9
Total RAM bits	3,423,744	5,215,104	7,427,520
DSP blocks	14	18	22
Embedded multipliers (1)	112	144	176
PLLs	12	12	12
Maximum user I/O pins	822	1,022	1,238

Note to Tables 1–1 and 1–2:

(1) This parameter lists the total number of 9×9 -bit multipliers for each device. For the total number of 18×18 -bit multipliers per device, divide the total number of 9×9 -bit multipliers by 2. For the total number of 36×36 -bit multipliers per device, divide the total number of 9×9 -bit multipliers by 8.

Stratix devices are available in space-saving FineLine BGATM and ballgrid array (BGA) packages (see Tables 1–3 through 1–5). All Stratix devices support vertical migration within the same package (e.g., the designer can migrate between the EP1S10, EP1S20, and EP1S25 devices in the 672-pin BGA package). Vertical migration means that designers can migrate to devices whose dedicated pins, configuration pins, and power pins are the same for a given package across device densities. For I/O pin migration across densities, the designer must cross reference the available I/O pins using the device pin-outs for all planned densities of a given package type to identify which I/O pins are migratable. The Quartus[®] II software can automatically cross reference and place all pins except differential pins for migration when given a device migration list. The designer must use the pin-outs for each device to verify the differential placement migration. A future version of the Quartus II software will support differential pin migration.

Table 1–3.	Table 1–3. Stratix Package Options & I/O Pin Counts												
Device	672-Pin BGA	956-Pin BGA	484-Pin FineLine BGA	672-Pin FineLine BGA	780-Pin FineLine BGA	1,020-Pin FineLine BGA	1,508-Pin FineLine BGA						
EP1S10	345		335	345	426								
EP1S20	426		361	426	586								
EP1S25	473			473	597	706							
EP1S30		683			597	726							
EP1S40		683			615	773	822						
EP1S60		683				773	1,022						
EP1S80		683				773	1,203						

Note to Table 1-3:

⁽¹⁾ All I/O pin counts include 20 dedicated clock input pins (clk[15..0], clk0n, clk2n, clk9n, and clk11n) that can be used for data inputs.

Table 1–4. Stratix BGA Package Sizes								
Dimension	672 Pin	956 Pin						
Pitch (mm)	1.27	1.27						
Area (mm²)	1,225	1,600						
Length × width (mm × mm)	35 × 35	40 × 40						

Table 1–5. Stratix FineLine BGA Package Sizes												
Dimension	484 Pin	672 Pin	780 Pin	1,020 Pin	1,508 Pin	1,923 Pin						
Pitch (mm)	1.00	1.00	1.00	1.00	1.00	1.00						
Area (mm²)	529	729	841	1,089	1,600	2,025						
Length × width (mm × mm)	23 × 23	27 × 27	29 × 29	33 × 33	40 × 40	45 × 45						

Stratix devices are available in up to three speed grades, -5, -6, and -7, with -5 being the fastest. Table 1–6 shows Stratix device speed-grade offerings.

Table 1-6	Table 1–6. Stratix Device Speed Grades												
Device	672-Pin BGA	956-Pin BGA	484-Pin FineLine BGA	672-Pin FineLine BGA	780-Pin FineLine BGA	1,020-Pin FineLine BGA	1,508-Pin FineLine BGA	1,923-Pin FineLine BGA					
EP1S10	-6, -7		-5, -6, -7	-6, -7	-5, -6, -7								
EP1S20	-6, -7		-5, -6, -7	-6, -7	-5, -6, -7								
EP1S25	-6, -7			-6, -7	-5, -6, -7	-5, -6, -7							
EP1S30		-5, -6, -7			-5, -6, -7	-5, -6, -7							
EP1S40		-5, -6, -7				-5, -6, -7	-5, -6, -7						
EP1S60		-6, -7				-6, -7	-6, -7						
EP1S80		-6, -7					-6, -7	(1)					

Note to Table 1-6:

⁽¹⁾ Contact Altera Applications for up to date information on availability for these devices.

2. Stratix Architecture

\$51002-1.0

Chapter 2, Stratix Architecture, replaces the Stratix Family Data Sheet.

Functional Description

Stratix devices contain a two-dimensional row- and column-based architecture to implement custom logic. A series of column and row interconnects of varying length and speed provides signal interconnects between logic array blocks (LABs), memory block structures, and DSP blocks.

The logic array consists of LABs, with 10 logic elements (LEs) in each LAB. An LE is a small unit of logic providing efficient implementation of user logic functions. LABs are grouped into rows and columns across the device.

M512 RAM blocks are simple dual-port memory blocks with 512 bits plus parity (576 bits). These blocks provide dedicated simple dual-port or single-port memory up to 18-bits wide at up to 318 MHz. M512 blocks are grouped into columns across the device in between certain LABs.

M4K RAM blocks are true dual-port memory blocks with 4K bits plus parity (4,608 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 36-bits wide at up to 291 MHz. These blocks are grouped into columns across the device in between certain LABs.

M-RAM blocks are true dual-port memory blocks with 512K bits plus parity (589,824 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 144-bits wide at up to 269 MHz. Several M-RAM blocks are located individually or in pairs within the device's logic array.

Digital signal processing (DSP) blocks can implement up to either eight full-precision 9×9 -bit multipliers, four full-precision 18×18 -bit multipliers, or one full-precision 36×36 -bit multiplier with add or subtract features. These blocks also contain 18-bit input shift registers for digital signal processing applications, including FIR and infinite impulse response (IIR) filters. DSP blocks are grouped into two columns in each device.

Each Stratix device I/O pin is fed by an I/O element (IOE) located at the end of LAB rows and columns around the periphery of the device. I/O pins support numerous single-ended and differential I/O standards. Each IOE contains a bidirectional I/O buffer and six registers for registering input, output, and output-enable signals. When used with dedicated clocks, these registers provide exceptional performance and interface support with external memory devices such as DDR SDRAM, FCRAM, ZBT, and QDR SRAM devices.

High-speed serial interface channels support transfers at up to 840 Mbps using LVDS, LVPECL, 3.3-V PCML, or HyperTransport technology I/O standards.

Figure 2–1 shows an overview of the Stratix device.

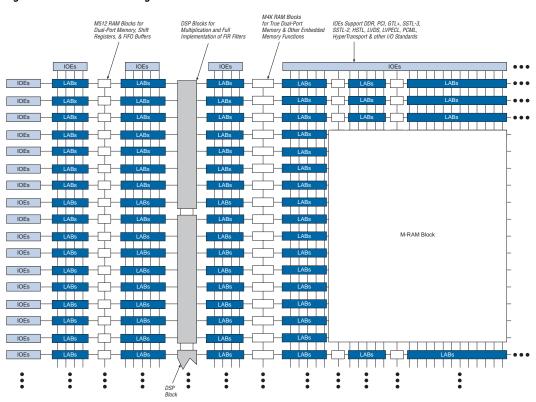


Figure 2-1. Stratix Block Diagram

Stratix Architecture Logic Array Blocks

The number of M512 RAM, M4K RAM, and DSP blocks varies by device along with row and column numbers and M-RAM blocks. Table 2–1 lists the resources available in Stratix devices.

Table 2-1.	Table 2–1. Stratix Device Resources												
Device	M512 RAM Columns/Blocks	M4K RAM Columns/Blocks	M-RAM Blocks	DSP Block Columns/Blocks	LAB Columns	LAB Rows							
EP1S10	4 / 94	2 / 60	1	2/6	40	30							
EP1S20	6 / 194	2 / 82	2	2/10	52	41							
EP1S25	6 / 224	3 / 138	2	2 / 10	62	46							
EP1S30	7 / 295	3 / 171	4	2 / 12	67	57							
EP1S40	8 / 384	3 / 183	4	2 / 14	77	61							
EP1S60	10 / 574	4 / 292	6	2 / 18	90	73							
EP1S80	11 / 767	4 / 364	9	2 / 22	101	91							

Logic Array Blocks

Each LAB consists of 10 LEs, LE carry chains, LAB control signals, local interconnect, LUT chain, and register chain connection lines. The local interconnect transfers signals between LEs in the same LAB. LUT chain connections transfer the output of one LE's LUT to the adjacent LE for fast sequential LUT connections within the same LAB. Register chain connections transfer the output of one LE's register to the adjacent LE's register within an LAB. The Quartus II Compiler places associated logic within an LAB or adjacent LABs, allowing the use of local, LUT chain, and register chain connections for performance and area efficiency. Figure 2–2 shows the Stratix LAB.

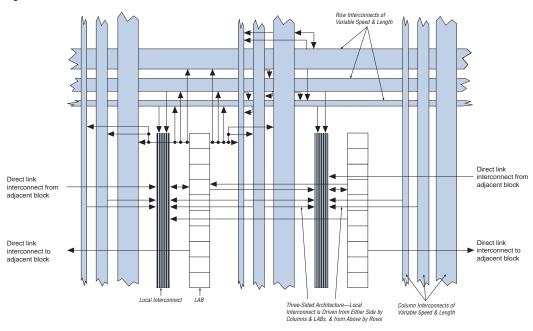


Figure 2-2. Stratix LAB Structure

LAB Interconnects

The LAB local interconnect can drive LEs within the same LAB. The LAB local interconnect is driven by column and row interconnects and LE outputs within the same LAB. Neighboring LABs, M512 RAM blocks, M4K RAM blocks, or DSP blocks from the left and right can also drive an LAB's local interconnect through the direct link connection. The direct link connection feature minimizes the use of row and column interconnects, providing higher performance and flexibility. Each LE can drive 30 other LEs through fast local and direct link interconnects. Figure 2–3 shows the direct link connection.

Stratix Architecture Logic Array Blocks

Direct link interconnect from left LAB, TriMatrix memory block, DSP block, or IOE output

Direct link interconnect from right LAB, TriMatrix memory block, DSP block, or IOE output

Direct link interconnect from right LAB, TriMatrix memory block, DSP block, or IOE output

Direct link interconnect from right LAB, TriMatrix memory block, DSP block, or IOE output

Direct link interconnect from right LAB, TriMatrix memory block, DSP block, or IOE output

Direct link interconnect from right LAB, TriMatrix memory block, DSP block, or IOE output

Figure 2-3. Direct Link Connection

LAB Control Signals

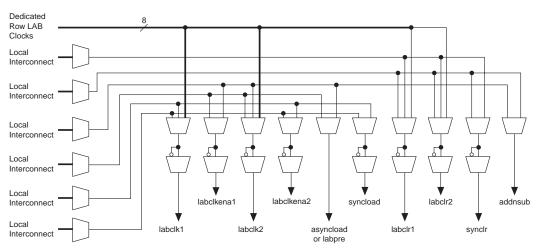
Each LAB contains dedicated logic for driving control signals to its LEs. The control signals include two clocks, two clock enables, two asynchronous clears, synchronous clear, asynchronous preset/load, synchronous load, and add/subtract control signals. This gives a maximum of 10 control signals at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions.

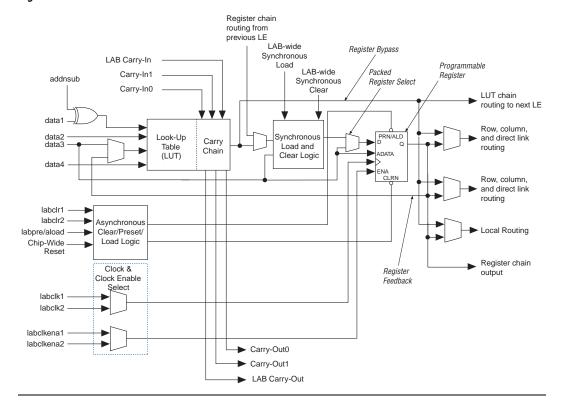
Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked. For example, any LE in a particular LAB using the <code>labclk1</code> signal will also use <code>labclkena1</code>. If the LAB uses both the rising and falling edges of a clock, it also uses both LAB-wide clock signals. De-asserting the clock enable signal will turn off the LAB-wide clock.

Each LAB can use two asynchronous clear signals and an asynchronous load/preset signal. The asynchronous load acts as a preset when the asynchronous load data input is tied high.

With the LAB-wide addnsub control signal, a single LE can implement a one-bit adder and subtractor. This saves LE resources and improves performance for logic functions such as DSP correlators and signed multipliers that alternate between addition and subtraction depending on data.

The LAB row clocks [7..0] and LAB local interconnect generate the LAB-wide control signals. The MultiTrack $^{\text{IM}}$ interconnect's inherent low skew allows clock and control signal distribution in addition to data. Figure 2–4 shows the LAB control signal generation circuit.




Figure 2-4. LAB-Wide Control Signals

Logic Elements

The smallest unit of logic in the Stratix architecture, the LE, is compact and provides advanced features with efficient logic utilization. Each LE contains a four-input LUT, which is a function generator that can implement any function of four variables. In addition, each LE contains a programmable register and carry chain with carry select capability. A single LE also supports dynamic single bit addition or subtraction mode selectable by an LAB-wide control signal. Each LE drives all types of interconnects: local, row, column, LUT chain, register chain, and direct link interconnects. See Figure 2–5.

Stratix Architecture Logic Elements

Figure 2-5. Stratix LE

Each LE's programmable register can be configured for D, T, JK, or SR operation. Each register has data, true asynchronous load data, clock, clock enable, clear, and asynchronous load/preset inputs. Global signals, general-purpose I/O pins, or any internal logic can drive the register's clock and clear control signals. Either general-purpose I/O pins or internal logic can drive the clock enable, preset, asynchronous load, and asynchronous data. The asynchronous load data input comes from the data3 input of the LE. For combinatorial functions, the register is bypassed and the output of the LUT drives directly to the outputs of the LE.

Each LE has three outputs that drive the local, row, and column routing resources. The LUT or register output can drive these three outputs independently. Two LE outputs drive column or row and direct link routing connections and one drives local interconnect resources. This allows the LUT to drive one output while the register drives another output. This feature, called register packing, improves device utilization because the device can use the register and the LUT for unrelated

functions. Another special packing mode allows the register output to feed back into the LUT of the same LE so that the register is packed with its own fan-out LUT. This provides another mechanism for improved fitting. The LE can also drive out registered and unregistered versions of the LUT output.

LUT Chain & Register Chain

In addition to the three general routing outputs, the LEs within an LAB have LUT chain and register chain outputs. LUT chain connections allow LUTs within the same LAB to cascade together for wide input functions. Register chain outputs allow registers within the same LAB to cascade together. The register chain output allows an LAB to use LUTs for a single combinatorial function and the registers to be used for an unrelated shift register implementation. These resources speed up connections between LABs while saving local interconnect resources. See "MultiTrack Interconnect" on page 2–14 for more information on LUT chain and register chain connections.

addnsub Signal

The LE's dynamic adder/subtractor feature saves logic resources by using one set of LEs to implement both an adder and a subtractor. This feature is controlled by the LAB-wide control signal addnsub. The addnsub signal sets the LAB to perform either A+B or A-B. The LUT computes addition, and subtraction is computed by adding the two's complement of the intended subtractor. The LAB-wide signal converts to two's complement by inverting the B bits within the LAB and setting carry-in = 1 to add one to the least significant bit (LSB). The LSB of an adder/subtractor must be placed in the first LE of the LAB, where the LAB-wide addnsub signal automatically sets the carry-in to 1. The Quartus II Compiler automatically places and uses the adder/subtractor feature when using adder/subtractor parameterized functions.

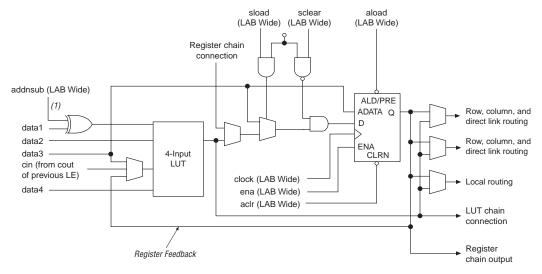
LE Operating Modes

The Stratix LE can operate in one of the following modes:

- Normal mode
- Dynamic arithmetic mode

Each mode uses LE resources differently. In each mode, eight available inputs to the LE—the four data inputs from the LAB local interconnect; carry-in0 and carry-in1 from the previous LE; the LAB carry-in from the previous carry-chain LAB; and the register chain connection—are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear,

Stratix Architecture Logic Elements


asynchronous preset load, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes. The addnsub control signal is allowed in arithmetic mode.

The Quartus II software, in conjunction with parameterized functions such as library of parameterized modules (LPM) functions, automatically chooses the appropriate mode for common functions such as counters, adders, subtractors, and arithmetic functions. If required, the designer can also create special-purpose functions that specify which LE operating mode to use for optimal performance.

Normal Mode

The normal mode is suitable for general logic applications and combinatorial functions. In normal mode, four data inputs from the LAB local interconnect are inputs to a four-input LUT (see Figure 2–6). The Quartus II Compiler automatically selects the carry-in or the data3 signal as one of the inputs to the LUT. Each LE can use LUT chain connections to drive its combinatorial output directly to the next LE in the LAB. Asynchronous load data for the register comes from the data3 input of the LE. LEs in normal mode support packed registers.

Figure 2-6. LE in Normal Mode

Note to Figure 2-6:

(1) This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain.

Dynamic Arithmetic Mode

The dynamic arithmetic mode is ideal for implementing adders, counters, accumulators, wide parity functions, and comparators. An LE in dynamic arithmetic mode uses four 2-input LUTs configurable as a dynamic adder/subtractor. The first two 2-input LUTs compute two summations based on a possible carry-in of 1 or 0; the other two LUTs generate carry outputs for the two chains of the carry select circuitry. As shown in Figure 2–7, the LAB carry-in signal selects either the carry-in0 or carry-in1 chain. The selected chain's logic level in turn determines which parallel sum is generated as a combinatorial or registered output. For example, when implementing an adder, the sum output is the selection of two possible calculated sums: data1 + data2 + carry-in0 or data1 + data2 + carry-in1. The other two LUTs use the data1 and data2 signals to generate two possible carry-out signals—one for a carry of 1 and the other for a carry of 0. The carry-in0 signal acts as the carry select for the carry-out 0 output and carry-in1 acts as the carry select for the carry-out1 output. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

The dynamic arithmetic mode also offers clock enable, counter enable, synchronous up/down control, synchronous clear, synchronous load, and dynamic adder/subtractor options. The LAB local interconnect data inputs generate the counter enable and synchronous up/down control signals. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. The Quartus II software automatically places any registers that are not used by the counter into other LABs. The addnsub LAB-wide signal controls whether the LE acts as an adder or subtractor.

Stratix Architecture Logic Elements

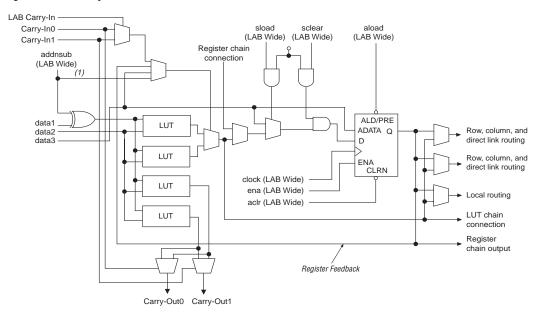


Figure 2-7. LE in Dynamic Arithmetic Mode

Note to Figure 2–7:

(1) The addnsub signal is tied to the carry input for the first LE of a carry chain only.

Carry-Select Chain

The carry-select chain provides a very fast carry-select function between LEs in arithmetic mode. The carry-select chain uses the redundant carry calculation to increase the speed of carry functions. The LE is configured to calculate outputs for a possible carry-in of 1 and carry-in of 0 in parallel. The carry-in0 and carry-in1 signals from a lower-order bit feed forward into the higher-order bit via the parallel carry chain and feed into both the LUT and the next portion of the carry chain. Carry-select chains can begin in any LE within an LAB.

The speed advantage of the carry-select chain is in the parallel precomputation of carry chains. Since the LAB carry-in selects the precomputed carry chain, not every LE is in the critical path. Only the propagation delay between LAB carry-in generation (LE 5 and LE 10) are now part of the critical path. This feature allows the Stratix architecture to implement high-speed counters, adders, multipliers, parity functions, and comparators of arbitrary width.

Figure 2–8 shows the carry-select circuitry in an LAB for a 10-bit full adder. One portion of the LUT generates the sum of two bits using the input signals and the appropriate carry-in bit; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for accumulator functions. Another portion of the LUT generates carry-out bits. An LAB-wide carry in bit selects which chain is used for the addition of given inputs. The carry-in signal for each chain, carry-in0 or carry-in1, selects the carry-out to carry forward to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is fed to local, row, or column interconnects.

The Quartus II Compiler automatically creates carry chain logic during design processing, or the designer can create it manually during design entry. Parameterized functions such as LPM functions automatically take advantage of carry chains for the appropriate functions.

The Quartus II Compiler creates carry chains longer than 10 LEs by linking LABs together automatically. For enhanced fitting, a long carry chain runs vertically allowing fast horizontal connections to TriMatrix memory and DSP blocks. A carry chain can continue as far as a full column.

Stratix Architecture Logic Elements

LAB Carry-In LAB Carry-In Sum1 A1 B1 LE1 Carry-In0 Carry-In1 Sum2 LE2 LUT B2 data1 Sum data2 Sum3 LUT LE3 A4 B4 Sum4 LUT LE4 LUT A5 B5 Sum5 LE5 Carry-Out0 Carry-Out1 Sum6 A6 B6 LE6 A7 B7 Sum7 LE7 <u>A8</u> <u>B8</u> Sum8 LE8 A9 B9 Sum9 LE9 Sum10 A10 B10 LE10 LAB Carry-Out

Figure 2-8. Carry Select Chain

Clear & Preset Logic Control

LAB-wide signals control the logic for the register's clear and preset signals. The LE directly supports an asynchronous clear and preset function. The register preset is achieved through the asynchronous load of a logic high. The direct asynchronous preset does not require a NOT-gate push-back technique. Stratix devices support simultaneous preset/

asynchronous load, and clear signals. An asynchronous clear signal takes precedence if both signals are asserted simultaneously. Each LAB supports up to two clears and one preset signal.

In addition to the clear and preset ports, Stratix devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. An option set before compilation in the Quartus II software controls this pin. This chip-wide reset overrides all other control signals.

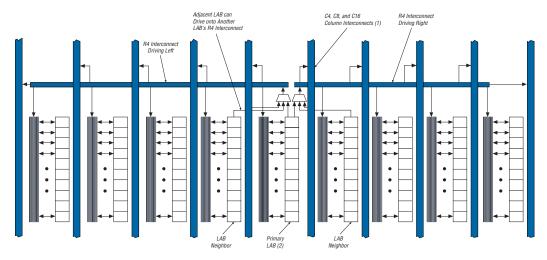
MultiTrack Interconnect

In the Stratix architecture, connections between LEs, TriMatrix memory, DSP blocks, and device I/O pins are provided by the MultiTrack interconnect structure with DirectDrive technology. The MultiTrack interconnect consists of continuous, performance-optimized routing lines of different lengths and speeds used for inter- and intra-design block connectivity. The Quartus II Compiler automatically places critical design paths on faster interconnects to improve design performance.

DirectDrive technology is a deterministic routing technology that ensures identical routing resource usage for any function regardless of placement within the device. The MultiTrack interconnect and DirectDrive technology simplify the integration stage of block-based designing by eliminating the re-optimization cycles that typically follow design changes and additions.

The MultiTrack interconnect consists of row and column interconnects that span fixed distances. A routing structure with fixed length resources for all devices allows predictable and repeatable performance when migrating through different device densities. Dedicated row interconnects route signals to and from LABs, DSP blocks, and TriMatrix memory within the same row. These row resources include:

- Direct link interconnects between LABs and adjacent blocks.
- R4 interconnects traversing four blocks to the right or left.
- R8 interconnects traversing eight blocks to the right or left.
- R24 row interconnects for high-speed access across the length of the device.


The direct link interconnect allows an LAB, DSP block, or TriMatrix memory block to drive into the local interconnect of its left and right neighbors and then back into itself. Only one side of a M-RAM block interfaces with direct link and row interconnects. This provides fast communication between adjacent LABs and/or blocks without using row interconnect resources.

The R4 interconnects span four LABs, three LABs and one M512 RAM block, two LABs and one M4K RAM block, or two LABs and one DSP block to the right or left of a source LAB. These resources are used for fast

Stratix Architecture MultiTrack Interconnect

row connections in a four-LAB region. Every LAB has its own set of R4 interconnects to drive either left or right. Figure 2–9 shows R4 interconnect connections from an LAB. R4 interconnects can drive and be driven by DSP blocks and RAM blocks and horizontal IOEs. For LAB interfacing, a primary LAB or LAB neighbor can drive a given R4 interconnect. For R4 interconnects that drive to the right, the primary LAB and right neighbor can drive on to the interconnect. For R4 interconnects that drive to the left, the primary LAB and its left neighbor can drive on to the interconnects can drive other R4 interconnects to extend the range of LABs they can drive. R4 interconnects can also drive C4 and C16 interconnects for connections from one row to another. Additionally, R4 interconnects can drive R24 interconnects.

Figure 2-9. R4 Interconnect Connections

Notes to Figure 2–9:

- (1) C4 interconnects can drive R4 interconnects.
- (2) This pattern is repeated for every LAB in the LAB row.

The R8 interconnects span eight LABs, M512 or M4K RAM blocks, or DSP blocks to the right or left from a source LAB. These resources are used for fast row connections in an eight-LAB region. Every LAB has its own set of R8 interconnects to drive either left or right. R8 interconnect connections between LABs in a row are similar to the R4 connections shown in Figure 2–9, with the exception that they connect to eight LABs to the right or left, not four. Like R4 interconnects, R8 interconnects can drive and be driven by all types of architecture blocks. R8 interconnects

can drive other R8 interconnects to extend their range as well as C8 interconnects for row-to-row connections. One R8 interconnect is faster than two R4 interconnects connected together.

R24 row interconnects span 24 LABs and provide the fastest resource for long row connections between LABs, TriMatrix memory, DSP blocks, and IOEs. The R24 row interconnects can cross M-RAM blocks. R24 row interconnects drive to other row or column interconnects at every fourth LAB and do not drive directly to LAB local interconnects. R24 row interconnects drive LAB local interconnects via R4 and C4 interconnects. R24 interconnects can drive R24, R4, C16, and C4 interconnects.

The column interconnect operates similarly to the row interconnect and vertically routes signals to and from LABs, TriMatrix memory, DSP blocks, and IOEs. Each column of LABs is served by a dedicated column interconnect, which vertically routes signals to and from LABs, TriMatrix memory and DSP blocks, and horizontal IOEs. These column resources include:

- LUT chain interconnects within an LAB
- Register chain interconnects within an LAB
- C4 interconnects traversing a distance of four blocks in up and down direction
- C8 interconnects traversing a distance of eight blocks in up and down direction
- C16 column interconnects for high-speed vertical routing through the device

Stratix devices include an enhanced interconnect structure within LABs for routing LE output to LE input connections faster using LUT chain connections and register chain connections. The LUT chain connection allows the combinatorial output of an LE to directly drive the fast input of the LE right below it, bypassing the local interconnect. These resources can be used as a high-speed connection for wide fan-in functions from LE 1 to LE 10 in the same LAB. The register chain connection allows the register output of one LE to connect directly to the register input of the next LE in the LAB for fast shift registers. The Quartus II Compiler automatically takes advantage of these resources to improve utilization and performance. Figure 2–10 shows the LUT chain and register chain interconnects.

Stratix Architecture MultiTrack Interconnect

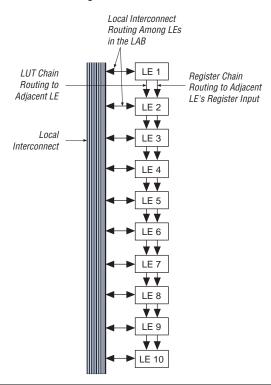


Figure 2-10. LUT Chain & Register Chain Interconnects

The C4 interconnects span four LABs, M512, or M4K blocks up or down from a source LAB. Every LAB has its own set of C4 interconnects to drive either up or down. Figure 2–11 shows the C4 interconnect connections from an LAB in a column. The C4 interconnects can drive and be driven by all types of architecture blocks, including DSP blocks, TriMatrix memory blocks, and vertical IOEs. For LAB interconnection, a primary LAB or its LAB neighbor can drive a given C4 interconnect. C4 interconnects can drive each other to extend their range as well as drive row interconnects for column-to-column connections.

C4 Interconnect Drives Local and R4 Interconnects up to Four Rows C4 Interconnect Driving Up LAB Row Interconnect Adjacent LAB can drive onto neighboring LAB's C4 interconnect Local Interconnect C4 Interconnect Driving Down

Figure 2–11. C4 Interconnect Connections Note (1)

Note to Figure 2–11:

(1) Each C4 interconnect can drive either up or down four rows.

Stratix Architecture MultiTrack Interconnect

C8 interconnects span eight LABs, M512, or M4K blocks up or down from a source LAB. Every LAB has its own set of C8 interconnects to drive either up or down. C8 interconnect connections between the LABs in a column are similar to the C4 connections shown in Figure 2–11 with the exception that they connect to eight LABs above and below. The C8 interconnects can drive and be driven by all types of architecture blocks similar to C4 interconnects. C8 interconnects can drive each other to extend their range as well as R8 interconnects for column-to-column connections. C8 interconnects are faster than two C4 interconnects.

C16 column interconnects span a length of 16 LABs and provide the fastest resource for long column connections between LABs, TriMatrix memory blocks, DSP blocks, and IOEs. C16 interconnects can cross M-RAM blocks and also drive to row and column interconnects at every fourth LAB. C16 interconnects drive LAB local interconnects via C4 and R4 interconnects and do not drive LAB local interconnects directly.

All embedded blocks communicate with the logic array similar to LAB-to-LAB interfaces. Each block (i.e., TriMatrix memory and DSP blocks) connects to row and column interconnects and has local interconnect regions driven by row and column interconnects. These blocks also have direct link interconnects for fast connections to and from a neighboring LAB. All blocks are fed by the row LAB clocks, labclk[7..0].

Table 2–2 shows the Stratix device's routing scheme.

Table 2–2. Strat	ix De	vice F	Routin	ng Sci	heme												
								De	stinat	ion							
Source	LUT Chain	Register Chain	Local Interconnect	Direct Link Interconnect	R4 Interconnect	R8 Interconnect	R24 Interconnect	C4 Interconnect	C8 Interconnect	C16 Interconnect	37	M512 RAM Block	M4K RAM Block	M-RAM Block	DSP Blocks	Column 10E	Row IOE
LUT Chain											>						
Register Chain											\						
Local Interconnect											✓	~	✓	~	✓	✓	\
Direct Link Interconnect			✓														
R4 Interconnect			✓		✓		✓	✓		✓							
R8 Interconnect			✓			✓			✓								
R24 Interconnect					✓		✓	✓		✓							
C4 Interconnect			✓		✓			✓									
C8 Interconnect			✓			✓			✓								
C16 Interconnect					\		~	~		✓							
LE	✓	✓	✓	✓	~	~		✓	✓								
M512 RAM Block			✓	✓	✓	✓		✓	✓								
M4K RAM Block			✓	✓	✓	✓		✓	✓								
M-RAM Block								✓	✓								
DSP Blocks			✓	✓	✓	✓		✓	✓								
Column IOE				✓				~	✓	✓							
Row IOE				✓		✓	✓	✓	✓	✓							

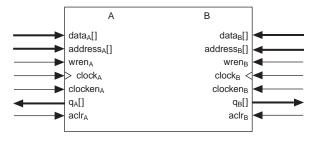
Stratix Architecture TriMatrix Memory

TriMatrix Memory

TriMatrix memory consists of three types of RAM blocks: M512, M4K, and M-RAM blocks. Although these memory blocks are different, they can all implement various types of memory with or without parity, including true dual-port, simple dual-port, and single-port RAM, ROM, and FIFO buffers. Table 2–3 shows the size and features of the different RAM blocks.

Table 2–3. TriMatrix Memory Features (Part 1 of 2)									
Memory Feature	M512 RAM Block (32 × 18 Bits)	M4K RAM Block (128 × 36 Bits)	M-RAM Block (4K × 144 Bits)						
Maximum performance	(1)	(1)	(1)						
True dual-port memory		✓	✓						
Simple dual-port memory	✓	✓	✓						
Single-port memory	✓	✓	✓						
Shift register	✓	✓							
ROM	✓	✓	(2)						
FIFO buffer	✓	✓	✓						
Byte enable		✓	✓						
Parity bits	✓	✓	✓						
Mixed clock mode	✓	✓	✓						
Memory initialization	✓	✓							
Simple dual-port memory mixed width support	✓	✓	✓						
True dual-port memory mixed width support		✓	✓						
Power-up conditions	Outputs cleared	Outputs cleared	Outputs unknown						
Register clears	Input and output reigsters	Input and output registers	Output registers						
Mixed-port read-during-write	Unknown output/old data	Unknown output/old data	Unknown output						

Table 2–3. TriMatrix Memory Features (Part 2 of 2)						
Memory Feature	M512 RAM Block (32 × 18 Bits)	M4K RAM Block (128 × 36 Bits)	M-RAM Block (4K × 144 Bits)			
Configurations	512 × 1 256 × 2 128 × 4 64 × 8 64 × 9 32 × 16 32 × 18	4K × 1 2K × 2 1K × 4 512 × 8 512 × 9 256 × 16 256 × 18 128 × 32 128 × 36	64K × 8 64K × 9 32K × 16 32K × 18 16K × 32 16K × 36 8K × 64 8K × 72 4K × 128 4K × 144			


Notes to Table 2-3:

- (1) See Table 4–35 for maximum performance information.
- (2) The M-RAM block does not support memory initializations. However, the M-RAM block can emulate a ROM function using a dual-port RAM bock. The Stratix device must write to the dual-port memory once and then disable the write-enable ports afterwards.

Memory Modes

TriMatrix memory blocks include input registers that synchronize writes and output registers to pipeline designs and improve system performance. M4K and M-RAM memory blocks offer a true dual-port mode to support any combination of two-port operations: two reads, two writes, or one read and one write at two different clock frequencies. Figure 2–12 shows true dual-port memory.

Figure 2-12. True Dual-Port Memory Configuration

In addition to true dual-port memory, the memory blocks support simple dual-port and single-port RAM. Simple dual-port memory supports a simultaneous read and write and can either read old data before the write occurs or just read the don't care bits. Single-port memory supports non-simultaneous reads and writes, but the q[] port will output the data once

Stratix Architecture TriMatrix Memory

it has been written to the memory (if the outputs are not registered) or after the next rising edge of the clock (if the outputs are registered). For more information, see Chapter 3, Using TriMatrix Embedded Memory Blocks in Stratix & Stratix GX Devices of the *Stratix Device Handbook*, *Volume 2*. Figure 2–13 shows these different RAM memory port configurations for TriMatrix memory.

Figure 2-13. Simple Dual-Port & Single-Port Memory Configurations

Simple Dual-Port Memory

Single-Port Memory (1)

Note to Figure 2–13:

 Two single-port memory blocks can be implemented in a single M4K block as long as each of the two independent block sizes is equal to or less than half of the M4K block size.

The memory blocks also enable mixed-width data ports for reading and writing to the RAM ports in dual-port RAM configuration. For example, the memory block can be written in $\times 1$ mode at port A and read out in $\times 16$ mode from port B.

TriMatrix memory architecture can implement fully synchronous RAM by registering both the input and output signals to the RAM block. All TriMatrix memory block inputs are registered providing synchronous write cycles. In synchronous operation, the memory block generates its own self-timed strobe write enable (WREN) signal derived from the global or regional clock. In contrast, a circuit using asynchronous RAM must generate the RAM WREN signal while ensuring its data and address

signals meet setup and hold time specifications relative to the WREN signal. The output registers can be bypassed. Pseudo-asynchronous reading is possible in the simple dual-port mode of M512 and M4K RAM blocks by clocking the read enable and read address registers on the negative clock edge and bypassing the output registers.

Two single-port memory blocks can be implemented in a single M4K block as long as each of the two independent block sizes is equal to or less than half of the M4K block size.

The Quartus II software automatically implements larger memory by combining multiple TriMatrix memory blocks. For example, two 256×16 -bit RAM blocks can be combined to form a 256×32 -bit RAM block. Memory performance does not degrade for memory blocks using the maximum number of words available in one memory block. Logical memory blocks using less than the maximum number of words use physical blocks in parallel, eliminating any external control logic that would increase delays. To create a larger high-speed memory block, the Quartus II software automatically combines memory blocks with LE control logic.

Parity Bit Support

The memory blocks support a parity bit for each byte. The parity bit, along with internal LE logic, can implement parity checking for error detection to ensure data integrity. Designers can also use parity-size data words to store user-specified control bits. In the M4K and M-RAM blocks, byte enables are also available for data input masking during write operations.

Shift Register Support

The designer can configure embedded memory blocks to implement shift registers for DSP applications such as pseudo-random number generators, multi-channel filtering, auto-correlation, and cross-correlation functions. These and other DSP applications require local data storage, traditionally implemented with standard flip-flops, which can quickly consume many logic cells and routing resources for large shift registers. A more efficient alternative is to use embedded memory as a shift register block, which saves logic cell and routing resources and provides a more efficient implementation with the dedicated circuitry.

The size of a $w \times m \times n$ shift register is determined by the input data width (w), the length of the taps (m), and the number of taps (n). The size of a $w \times m \times n$ shift register must be less than or equal to the maximum number of memory bits in the respective block: 576 bits for the M512 RAM block and 4,608 bits for the M4K RAM block. The total number of

Stratix Architecture TriMatrix Memory

shift register outputs (number of taps $n \times$ width w) must be less than the maximum data width of the RAM block (18 for M512 blocks, 36 for M4K blocks). To create larger shift registers, the memory blocks are cascaded together.

Data is written into each address location at the falling edge of the clock and read from the address at the rising edge of the clock. The shift register mode logic automatically controls the positive and negative edge clocking to shift the data in one clock cycle. Figure 2–14 shows the TriMatrix memory block in the shift register mode.

m-Bit Shift Register

w

m-Bit Shift Register

w

m-Bit Shift Register

w

m-Bit Shift Register

Figure 2-14. Shift Register Memory Configuration

Memory Block Size

TriMatrix memory provides three different memory sizes for efficient application support. The large number of M512 blocks are ideal for designs with many shallow first-in first-out (FIFO) buffers. M4K blocks

provide additional resources for channelized functions that do not require large amounts of storage. The M-RAM blocks provide a large single block of RAM ideal for data packet storage. The different-sized blocks allow Stratix devices to efficiently support variable-sized memory in designs.

The Quartus II software automatically partitions the user-defined memory into the embedded memory blocks using the most efficient size combinations. The designer can also manually assign the memory to a specific block size or a mixture of block sizes.

M512 RAM Block

The M512 RAM block is a simple dual-port memory block and is useful for implementing small FIFO buffers, DSP, and clock domain transfer applications. Each block contains 576 RAM bits (including parity bits). M512 RAM blocks can be configured in the following modes:

- Simple dual-port RAM
- Single-port RAM
- FIFO
- ROM
- Shift register

When configured as RAM or ROM, the designer can use an initialization file to pre-load the memory contents.

The memory address depths and output widths can be configured as $512 \times 1,256 \times 2,128 \times 4,64 \times 8$ (64×9 bits with parity), and 32×16 (32×18 bits with parity). Mixed-width configurations are also possible, allowing different read and write widths. Table 2–4 summarizes the possible M512 RAM block configurations.

Table 2–4. M512 RAM Block Configurations (Simple Dual-Port RAM) (Part 1 of 2)							
Read Port	Write Port						
	512 × 1	256 × 2	128 × 4	64 × 8	32 × 16	64 × 9	32 × 18
512 × 1	✓	✓	✓	✓	✓		
256 × 2	✓	✓	✓	✓	✓		
128 × 4	✓	✓	✓		✓		
64 × 8	✓	✓		✓			
32 × 16	✓	✓	✓		✓		

Stratix Architecture TriMatrix Memory

Table 2–4. M512 RAM Block Configurations (Simple Dual-Port RAM) (Part 2 of 2)							
Read Port	Write Port						
	512 × 1	256 × 2	128 × 4	64 × 8	32 × 16	64 × 9	32 × 18
64 × 9						✓	
32 × 18							✓

When the M512 RAM block is configured as a shift register block, a shift register of size up to 576 bits is possible.

The M512 RAM block can also be configured to support serializer and deserializer applications. By using the mixed-width support in combination with DDR I/O standards, the block can function as a SERDES to support low-speed serial I/O standards using global or regional clocks. See "I/O Structure" on page 2–101 for details on dedicated SERDES in Stratix devices.

M512 RAM blocks can have different clocks on its inputs and outputs. The wren, datain, and write address registers are all clocked together from one of the two clocks feeding the block. The read address, rden, and output registers can be clocked by either of the two clocks driving the block. This allows the RAM block to operate in read/write or input/output clock modes. Only the output register can be bypassed. The eight labelk signals or local interconnect can drive the inclock, outclock, wren, rden, inclr, and outclr signals. Because of the advanced interconnect between the LAB and M512 RAM blocks, LEs can also control the wren and rden signals and the RAM clock, clock enable, and asynchronous clear signals. Figure 2–15 shows the M512 RAM block control signal generation logic.

The RAM blocks within Stratix devices have local interconnects to allow LEs and interconnects to drive into RAM blocks. The M512 RAM block local interconnect is driven by the R4, R8, C4, C8, and direct link interconnects from adjacent LABs. The M512 RAM blocks can communicate with LABs on either the left or right side through these row interconnects or with LAB columns on the left or right side with the column interconnects. Up to 10 direct link input connections to the M512 RAM block are possible from the left adjacent LABs and another 10 possible from the right adjacent LAB. M512 RAM outputs can also connect to left and right LABs through 10 direct link interconnects. The M512 RAM block has equal opportunity for access and performance to and from LABs on either its left or right side. Figure 2–16 shows the M512 RAM block to logic array interface.

Dedicated Row LAB Clocks Local Interconnect Local Interconnect Local Interconnect Local Interconnect Local Interconnect Local Interconnect Local inclocken outclocken outclr Interconnect wren Local inclock outclock rden inclr Interconnect

Figure 2-15. M512 RAM Block Control Signals

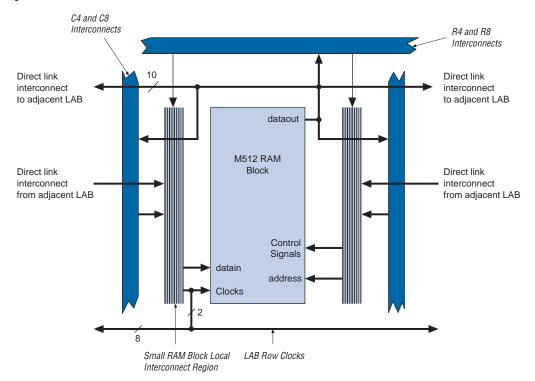


Figure 2-16. M512 RAM Block LAB Row Interface

M4K RAM Blocks

The M4K RAM block includes support for true dual-port RAM. The M4K RAM block is used to implement buffers for a wide variety of applications such as storing processor code, implementing lookup schemes, and implementing larger memory applications. Each block contains 4,608 RAM bits (including parity bits). M4K RAM blocks can be configured in the following modes:

- True dual-port RAM
- Simple dual-port RAM
- Single-port RAM
- FIFO
- ROM
- Shift register

When configured as RAM or ROM, the designer can use an initialization file to pre-load the memory contents.

The memory address depths and output widths can be configured as $4,096 \times 1, 2,048 \times 2, 1,024 \times 4,512 \times 8$ (or 512×9 bits), 256×16 (or 256×18 bits), and 128×32 (or 128×36 bits). The 128×32 - or 36-bit configuration is not available in the true dual-port mode. Mixed-width configurations are also possible, allowing different read and write widths. Tables 2–5 and 2–6 summarize the possible M4K RAM block configurations.

Table 2-5. M4	Table 2–5. M4K RAM Block Configurations (Simple Dual-Port)								
Dood Dort		Write Port							
Read Port	4K × 1	2K × 2	1K × 4	512 × 8	256 × 16	128 × 32	512 × 9	256 × 18	128 × 36
4K × 1	✓	✓	✓	✓	✓	✓			
2K × 2	✓	✓	✓	✓	✓	✓			
1K × 4	✓	✓	✓	✓	✓	✓			
512 × 8	✓	✓	✓	✓	✓	✓			
256 × 16	✓	✓	✓	✓	✓	✓			
128 × 32	✓	✓	✓	✓	✓	✓			
512 × 9							✓	✓	✓
256 × 18							✓	✓	✓
128 × 36							✓	✓	✓

Table 2–6. M4K RAM	able 2–6. M4K RAM Block Configurations (True Dual-Port)						
Dovt A	Port B						
Port A	4K × 1	2K × 2	1K × 4	512 × 8	256 × 16	512 × 9	256 × 18
4K × 1	✓	✓	✓	✓	✓		
2K × 2	✓	✓	✓	✓	✓		
1K × 4	✓	✓	✓	✓	✓		
512 × 8	✓	✓	✓	✓	✓		
256 × 16	✓	✓	✓	✓	✓		
512 × 9						✓	✓
256 × 18						✓	✓

When the M4K RAM block is configured as a shift register block, the designer can create a shift register up to 4,608 bits ($w \times m \times n$).

M4K RAM blocks support byte writes when the write port has a data width of 16, 18, 32, or 36 bits. The byte enables allow the input data to be masked so the device can write to specific bytes. The unwritten bytes retain the previous written value. Table 2–7 summarizes the byte selection.

Table 2–7. Byte Enable for M4K Blocks Notes (1), (2)					
byteena[30] datain ×18 datain ×36					
[0] = 1	[80]	[80]			
[1] = 1	[179]	[179]			
[2] = 1	-	[2618]			
[3] = 1	_	[3527]			

Notes to Table 2–7:

- (1) Any combination of byte enables is possible.
- (2) Byte enables can be used in the same manner with 8-bit words, i.e., in ×16 and ×32 modes.

The M4K RAM blocks allow for different clocks on their inputs and outputs. Either of the two clocks feeding the block can clock M4K RAM block registers (renwe, address, byte enable, datain, and output registers). Only the output register can be bypassed. The eight labclk signals or local interconnects can drive the control signals for the A and B ports of the M4K RAM block. LEs can also control the clock_a, clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and clocken_b signals, as shown in Figure 2–17.

The R4, R8, C4, C8, and direct link interconnects from adjacent LABs drive the M4K RAM block local interconnect. The M4K RAM blocks can communicate with LABs on either the left or right side through these row resources or with LAB columns on either the right or left with the column resources. Up to 10 direct link input connections to the M4K RAM Block are possible from the left adjacent LABs and another 10 possible from the right adjacent LAB. M4K RAM block outputs can also connect to left and right LABs through 10 direct link interconnects each. Figure 2–18 shows the M4K RAM block to logic array interface.

Figure 2-17. M4K RAM Block Control Signals

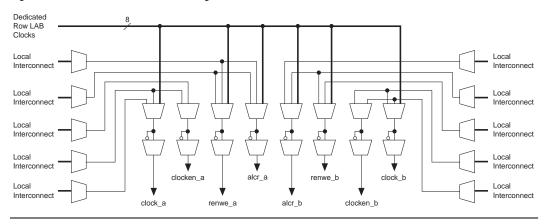
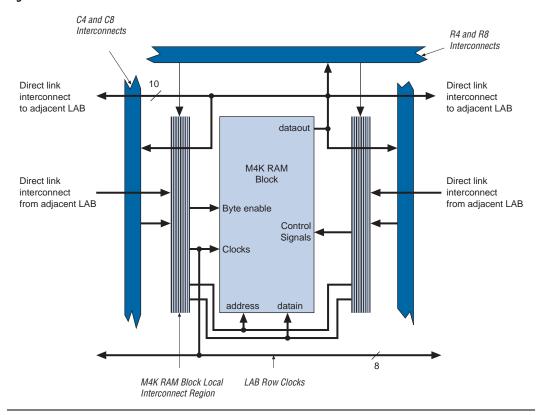



Figure 2-18. M4K RAM Block LAB Row Interface

M-RAM Block

The largest TriMatrix memory block, the M-RAM block, is useful for applications where a large volume of data must be stored on-chip. Each block contains 589,824 RAM bits (including parity bits). The M-RAM block can be configured in the following modes:

- True dual-port RAM
- Simple dual-port RAM
- Single-port RAM
- FIFO

The designer cannot use an initialization file to initialize the contents of a M-RAM block. All M-RAM block contents power up to an undefined value. Only synchronous operation is supported in the M-RAM block, so all inputs are registered. Output registers can be bypassed. The memory address and output width can be configured as $64 \text{K} \times 8$ (or $64 \text{K} \times 9$ bits), $32 \text{K} \times 16$ (or $32 \text{K} \times 18$ bits), $16 \text{K} \times 32$ (or $16 \text{K} \times 36$ bits), $8 \text{K} \times 64$ (or $8 \text{K} \times 72$ bits), and $4 \text{K} \times 128$ (or $4 \text{K} \times 144$ bits). The $4 \text{K} \times 128$ configuration is unavailable in true dual-port mode because there are a total of 144 data output drivers in the block. Mixed-width configurations are also possible, allowing different read and write widths. Tables 2-8 and 2-9 summarizes the possible M-RAM block configurations:

Table 2–8. M-RAM Block Configurations (Simple Dual-Port)							
	Write Port						
Read Port	64K × 9	32K × 18	16K × 36	8K × 72	4K × 144		
64K × 9	✓	✓	✓	✓			
32K × 18	✓	✓	✓	✓			
16K × 36	✓	✓	✓	✓			
8K × 72	✓	✓	✓	✓			
4K × 144					✓		

Table 2–9. M-RAM Block Configurations (True Dual-Port)						
Dovt A	Port B					
Port A	64K × 9	32K × 18	16K × 36	8K × 72		
64K × 9	✓	✓	✓	✓		
32K × 18	✓	✓	✓	✓		
16K × 36	✓	✓	✓	✓		
8K × 72	✓	✓	✓	✓		

The read and write operation of the memory is controlled by the WREN signal, which sets the ports into either read or write modes. There is no separate read enable (RE) signal.

Writing into RAM is controlled by both the WREN and byte enable (byteena) signals for each port. The default value for the byteena signal is high, in which case writing is controlled only by the WREN signal. The byte enables are available for the ×18, ×36, and ×72 modes. In the ×144 simple dual-port mode, the two sets of byteena signals (byteena_a and byteena_b) are combined to form the necessary 16 byte enables. Table 2–10 and Table 2–11 summarize the byte selection.

Table 2–10. Byte l	Table 2–10. Byte Enable for M-RAM BlocksNotes (1), (2)						
byteena[30]	datain ×18	datain ×36	datain ×72				
[0] = 1	[80]	[80]	[80]				
[1] = 1	[179]	[179]	[179]				
[2] = 1	-	[2618]	[2618]				
[3] = 1	-	[3527]	[3527]				
[4] = 1	-	_	[4436]				
[5] = 1	_	_	[5345]				
[6] = 1	-	_	[6254]				
[7] = 1	_	_	[7163]				

Table 2–11. M-RAM Combined Byte Selection for ×144 Mode Notes (1), (2)			
byteena[150]	datain ×144		
[0] = 1	[80]		
[1] = 1	[179]		
[2] = 1	[2618]		
[3] = 1	[3527]		
[4] = 1	[4436]		
[5] = 1	[5345]		
[6] = 1	[6254]		
[7] = 1	[7163]		
[8] = 1	[8072]		
[9] = 1	[8981]		
[10] = 1	[9890]		
[11] = 1	[10799]		
[12] = 1	[116108]		
[13] = 1	[125117]		
[14] = 1	[134126]		
[15] = 1	[143135]		

Notes to Tables 2-10 and 2-11:

- (1) Any combination of byte enables is possible.
- (2) Byte enables can be used in the same manner with 8-bit words, i.e., in ×16, ×32, ×64, and ×128 modes.

Similar to all RAM blocks, M-RAM blocks can have different clocks on their inputs and outputs. All input registers—renwe, datain, address, and byte enable registers—are clocked together from either of the two clocks feeding the block. The output register can be bypassed. The eight labelk signals or local interconnect can drive the control signals for the A and B ports of the M-RAM block. LEs can also control the clock_a, clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and clocken_b signals as shown in Figure 2–19.

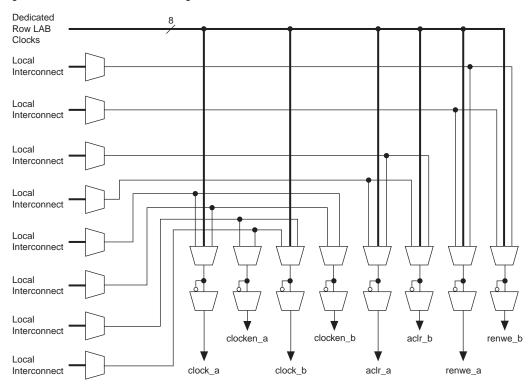


Figure 2-19. M-RAM Block Control Signals

One of the M-RAM block's horizontal sides drive the address and control signal (clock, renwe, byteena, etc.) inputs. Typically, the horizontal side closest to the device perimeter contains the interfaces. The one exception is when two M-RAM blocks are paired next to each other. In this case, the side of the M-RAM block opposite the common side of the two blocks contains the input interface. The top and bottom sides of any M-RAM block contain data input and output interfaces to the logic array. The top side has 72 data inputs and 72 data outputs for port B, and the bottom side has another 72 data inputs and 72 data outputs for port A. Figure 2–20 shows an example floorplan for the EP1S60 device and the location of the M-RAM interfaces.

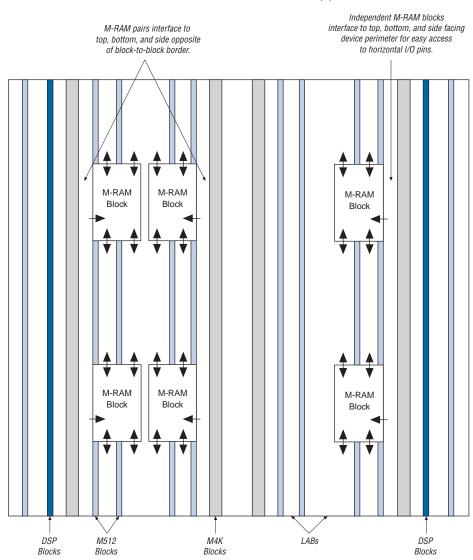


Figure 2–20. EP1S60 Device with M-RAM Interface Locations Note (1)

Note to Figure 2-20:

(1) Device shown is an EP1S60 device. The number and position of M-RAM blocks varies in other devices.

The M-RAM block local interconnect is driven by the R4, R8, C4, C8, and direct link interconnects from adjacent LABs. For independent M-RAM blocks, up to 10 direct link address and control signal input connections to the M-RAM block are possible from the left adjacent LABs for M-RAM

blocks facing to the left, and another 10 possible from the right adjacent LABs for M-RAM blocks facing to the right. For column interfacing, every M-RAM column unit connects to the right and left column lines, allowing each M-RAM column unit to communicate directly with three columns of LABs. Figures 2–21 through 2–23 show the interface between the M-RAM block and the logic array.

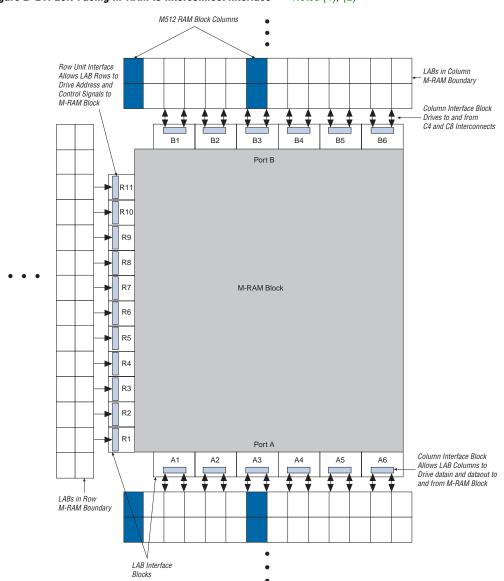


Figure 2–21. Left-Facing M-RAM to Interconnect Interface Notes (1), (2)

Notes to Figure 2–21:

- (1) Only R24 and C16 interconnects cross the M-RAM block boundaries.
- (2) The right-facing M-RAM block has interface blocks on the right side, but none on the left. B1 to B6 and A1 to A6 orientation is clipped across the vertical axis for right-facing M-RAM blocks.

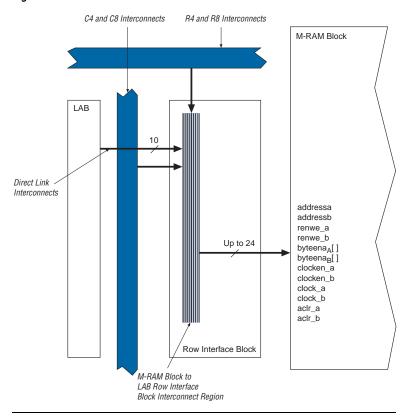


Figure 2-22. M-RAM Row Unit Interface to Interconnect

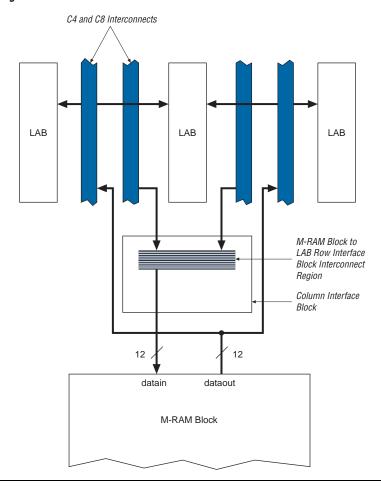


Figure 2-23. M-RAM Column Unit Interface to Interconnect

Table 2–12 shows the input and output data signal connections for the column units (B1 to B6 and A1 to A6). It also shows the address and control signal input connections to the row units (R1 to R11).

Unit Interface Block	Input Signals	Output Signals	
R1	addressa[70]		
R2	addressa[158]		
R3	byte_enable_a[70] renwe_a		
R4	-		
R5	-		
R6	clock_a clocken_a clock_b clocken_b		
R7	-		
R8	-		
R9	byte_enable_b[70] renwe_b		
R10	addressb[158]		
R11	addressb[70]		
B1	datain_b[7160]	dataout_b[7160]	
B2	datain_b[5948]	dataout_b[5948]	
B3	datain_b[4736]	dataout_b[4736]	
B4	datain_b[3524]	dataout_b[3524]	
B5	datain_b[2312]	dataout_b[2312]	
B6	datain_b[110]	dataout_b[110]	
A1	datain_a[7160]	dataout_a[7160]	
A2	datain_a[5948]	dataout_a[5948]	
A3	datain_a[4736]	dataout_a[4736]	
A4	datain_a[3524]	dataout_a[3524]	
A5	datain_a[2312]	dataout_a[2312]	
A6	datain_a[110]	dataout_a[110]	

Independent Clock Mode

The memory blocks implement independent clock mode for true dual-port memory. In this mode, a separate clock is available for each port (ports A and B). Clock A controls all registers on the port A side, while clock B controls all registers on the port B side. Each port, A and B, also supports independent clock enables and asynchronous clear signals for port A and B registers. Figure 2–24 shows a TriMatrix memory block in independent clock mode.

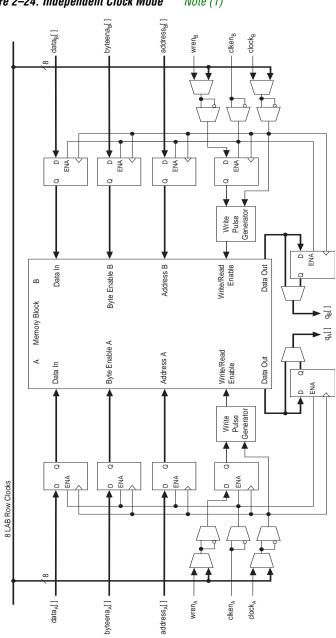


Figure 2–24. Independent Clock Mode Note (1)

Note to Figure 2–24:

(1) All registers shown have asynchronous clear ports.

Input/Output Clock Mode

Input/output clock mode can be implemented for both the true and simple dual-port memory modes. On each of the two ports, A or B, one clock controls all registers for inputs into the memory block: data input, wren, and address. The other clock controls the block's data output registers. Each memory block port, A or B, also supports independent clock enables and asynchronous clear signals for input and output registers. Figures 2–25 and 2–26 show the memory block in input/output clock mode.

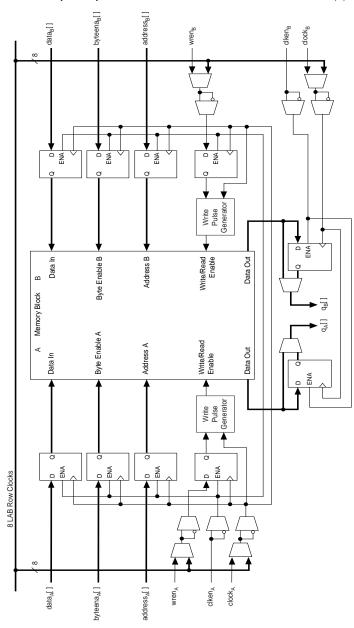


Figure 2–25. Input/Output Clock Mode in True Dual-Port Mode Note (1)

Note to Figure 2–25:

(1) All registers shown have asynchronous clear ports.

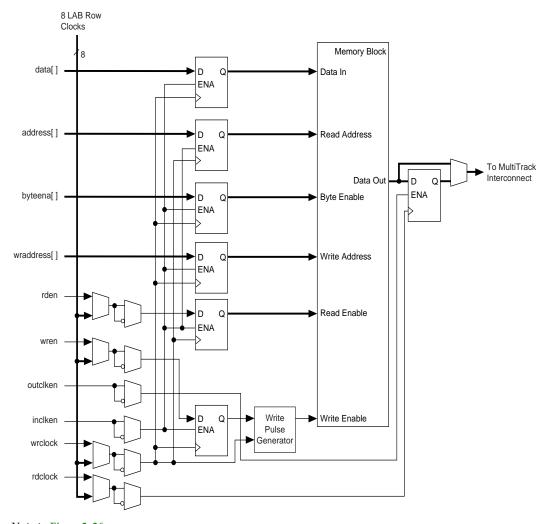


Figure 2–26. Input/Output Clock Mode in Simple Dual-Port Mode Note (1)

Note to Figure 2-26:

(1) All registers shown except the rden register have asynchronous clear ports.

Read/Write Clock Mode

The memory blocks implement read/write clock mode for simple dual-port memory. The designer can use up to two clocks in this mode. The write clock controls the block's data inputs, wraddress, and wren. The read clock controls the data output, rdaddress, and rden. The memory

blocks support independent clock enables for each clock and asynchronous clear signals for the read- and write-side registers. Figure 2–27 shows a memory block in read/write clock mode.

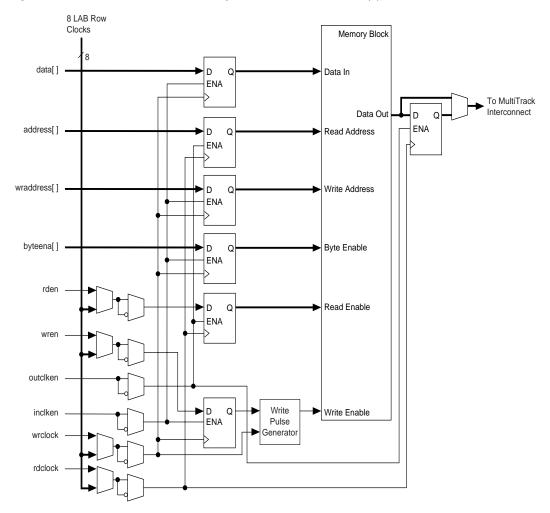


Figure 2–27. Read/Write Clock Mode in Simple Dual-Port Mode Note (1)

Note to Figure 2-27:

(1) All registers shown except the rden register have asynchronous clear ports.

Single-Port Mode

The memory blocks also support single-port mode, used when simultaneous reads and writes are not required. See Figure 2–28. A single block in a memory block can support up to two single-port mode RAM blocks in the M4K RAM blocks if each RAM block is less than or equal to 2K bits in size.

8 LAB Row Clocks RAM/ROM data[] Data In ENA To MultiTrack Interconnect Data Out ENA address[] D Address ENA wren Write Enable outclken D inclken Write ENA Pulse inclock Generator outclock

Figure 2-28. Single-Port Mode

Digital Signal Processing Block

The most commonly used DSP functions are finite impulse response (FIR) filters, complex FIR filters, infinite impulse response (IIR) filters, fast Fourier transform (FFT) functions, direct cosine transform (DCT) functions, and correlators. All of these blocks have the same fundamental building block: the multiplier. Additionally, some applications need specialized operations such as multiply-add and multiply-accumulate operations. Stratix devices provide DSP blocks to meet the arithmetic requirements of these functions.

Each Stratix device has two columns of DSP blocks to efficiently implement DSP functions faster than LE-based implementations. Larger Stratix devices have more DSP blocks per column (see Table 2–13). Each DSP block can be configured to support up to:

- Eight 9 × 9-bit multipliers
- Four 18 × 18-bit multipliers
- One 36 × 36-bit multiplier

As indicated, the Stratix DSP block can support one 36×36 -bit multiplier in a single DSP block. This is true for any matched sign multiplications (either unsigned by unsigned or signed by signed), but the capabilities for dynamic and mixed sign multiplications are handled differently. The following list provides the largest functions that can fit into a single DSP block.

- 36 × 36-bit unsigned by unsigned multiplication
- 36 × 36-bit signed by signed multiplication
- 35 × 36-bit unsigned by signed multiplication
- 36 × 35-bit signed by unsigned multiplication
- 36 × 35-bit signed by dynamic sign multiplication
- \blacksquare 35 × 36-bit dynamic sign by signed multiplication
- 35 × 36-bit unsigned by dynamic sign multiplication
- 36 × 35-bit dynamic sign by unsigned multiplication
- 35 x 35-bit dynamic sign multiplication when the sign controls for each operand are different
- ightharpoonup 36 imes 36-bit dynamic sign multiplication when the same sign control is used for both operands

This list only shows functions that can fit into a single DSP block. Multiple DSP blocks can support larger multiplication functions.

Figure 2–29 shows one of the columns with surrounding LAB rows.

DSP Block Column DSP Block 8 LAB Rows •

Figure 2-29. DSP Blocks Arranged in Columns

Table 2-13. DSP Blocks in Stratix Devices Note (1), (2) Total 18×18 Total 36×36 Total 9×9 Device **DSP Blocks** Multipliers Multipliers Multipliers EP1S10 6 6 48 24 EP1S20 10 80 40 10 EP1S25 10 80 10 40 EP1S30 12 96 48 12 EP1S40 14 112 56 14 EP1S60 18 144 72 18 EP1S80 22 176 22 88

Table 2–13 shows the number of DSP blocks in each Stratix device.

Notes to Table 2–13:

- (1) Each device has either the number of 9×9 -, 18×18 -, or 36×36 -bit multipliers shown. The total number of multipliers for each device is not the sum of all the multipliers.
- (2) The number of supported multiply functions shown is based on signed/signed or unsigned/unsigned implementations.

DSP block multipliers can optionally feed an adder/subtractor or accumulator within the block depending on the configuration. This makes routing to LEs easier, saves LE routing resources, and increases performance, because all connections and blocks are within the DSP block. Additionally, the DSP block input registers can efficiently implement shift registers for FIR filter applications.

Figure 2–30 shows the top-level diagram of the DSP block configured for 18×18 -bit multiplier mode. Figure 2–31 shows the 9×9 -bit multiplier configuration of the DSP block.

Optional Serial Shift Register Inputs from Previous DSP Block Multiplier Stage Optional Stage Configurable Output Selection as Accumulator or Dynamic Q Multiplexer Adder/Subtractor ENA CLRN ENA CLRN Q ENA CLRN Adder/ Subtractor/ Accumulator D Q ENA CLRN ь Q ENA CLRN Q ENA CLRN Summation Q ENA CLRN D Optional Output Register Stage ENA Summation Stage CLRN for Adding Four D Q Multipliers Together ENA CLRN Adder/ Subtractor/ Accumulator Q D ENA CLRN Optional Serial Q Shift Register Optional Pipeline Outputs to ENA Register Stage Next DSP Block CLRN Q in the Column ENA Optional Input Register Stage with Parallel Input or CLRN Shift Register Configuration to MultiTrack Interconnect

Figure 2-30. DSP Block Diagram for 18 × 18-Bit Configuration

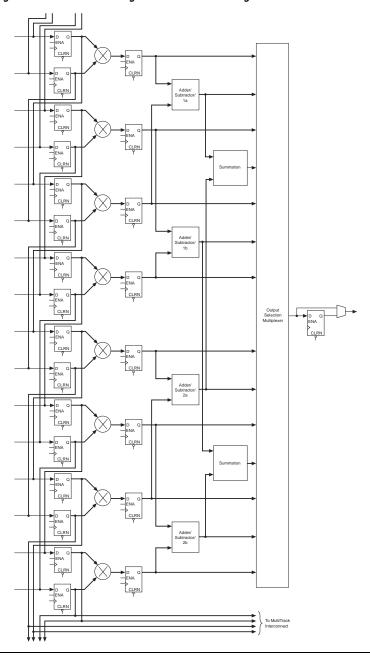
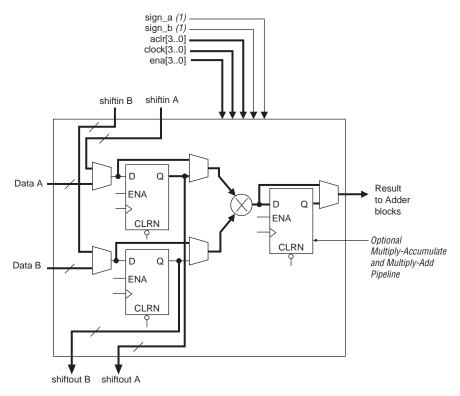


Figure 2–31. DSP Block Diagram for 9×9 -Bit Configuration


The DSP block consists of the following elements:

- Multiplier block
- Adder/output block

Multiplier Block

The DSP block multiplier block consists of the input registers, a multiplier, and pipeline register for pipelining multiply-accumulate and multiply-add/subtract functions as shown in Figure 2–32.

Figure 2-32. Multiplier Sub-Block within Stratix DSP Block

Note to Figure 2-32:

(1) These signals can be unregistered or registered once to match data path pipelines if required.

Input Registers

A bank of optional input registers is located at the input of each multiplier and multiplicand inputs to the multiplier. When these registers are configured for parallel data inputs, they are driven by regular routing resources. Designers can use a clock signal, asynchronous clear signal, and a clock enable signal to independently control each set of A and B inputs for each multiplier in the DSP block. Designers select these control signals from a set of four different clock[3..0], aclr[3..0], and ena[3..0] signals that drive the entire DSP block.

Designers can also configure the input registers for a shift register application. In this case, the input registers feed the multiplier and drive two dedicated shift output lines: shiftoutA and shiftoutB. The shift outputs of one multiplier block directly feed the adjacent multiplier block in the same DSP block (or the next DSP block) as shown in Figure 2–33, to form a shift register chain. This chain can terminate in any block, i.e., designers can create any length of shift register chain up to 224 registers. The designer can use the input shift registers for FIR filter applications. One set of shift inputs can provide data for a filter, and the other are coefficients that are optionally loaded in serial or parallel. When implementing 9×9 - and 18×18 -bit multipliers, the designer does not need to implement external shift registers in LAB LEs. The designer implements all the filter circuitry within the DSP block and its routing resources, saving LE and general routing resources for general logic. External registers are needed for shift register inputs when using 36×36 -bit multipliers.

Data A D Q ENA $\mathsf{A}[n] \times \mathsf{B}[n]$ CLRN ENA D Q Data B CLRN ENA CLRN Data B Data A D Q ENA $A[n-1] \times B[n-$ CLRN ENA D Q ENA CLRN Data A Data B D Q ENA $A[n-2] \times B[n-$ CLRN D Q CLRN ENA CLRN

Figure 2–33. Multiplier Sub-Blocks Using Input Shift Register Connections Note (1)

Note to Figure 2-33:

 Either Data A or Data B input can be set to a parallel input for constant coefficient multiplication.

 Table 2–14. Input Register Modes

 Register Input Mode
 9×9 18×18 36×36

 Parallel input
 \checkmark \checkmark

 Shift register input
 \checkmark \checkmark

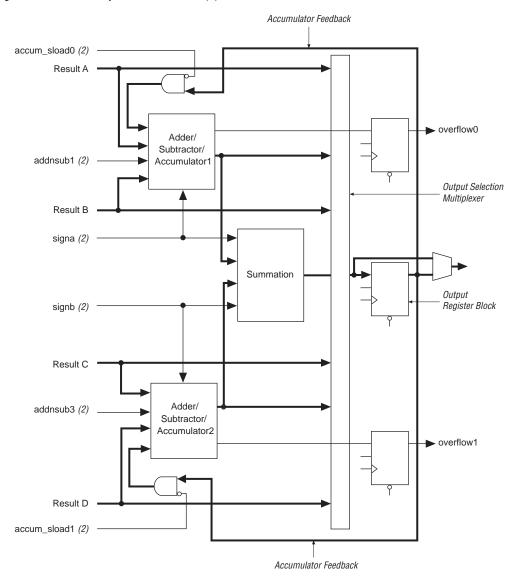
Table 2–14 shows the summary of input register modes for the DSP block.

Multiplier

The multiplier supports 9×9 -, 18×18 -, or 36×36 -bit multiplication. Each DSP block supports eight possible 9×9 -bit or smaller multipliers. There are four multiplier blocks available for multipliers larger than 9×9 bits but smaller than 18×18 bits. There is one multiplier block available for multipliers larger than 18×18 bits but smaller than or equal to 36×36 bits. The ability to have several small multipliers is useful in applications such as video processing. Large multipliers greater than 18×18 bits are useful for applications such as the mantissa multiplication of a single-precision floating-point number.

The multiplier operands can be signed or unsigned numbers, where the result is signed if either input is signed as shown in Table 2–15. The $sign_a$ and $sign_b$ signals provide dynamic control of each operand's representation: a logic 1 indicates the operand is a signed number, a logic 0 indicates the operand is an unsigned number. These sign signals affect all multipliers and adders within a single DSP block and designers can register them to match the data path pipeline. The multipliers are full precision (i.e., 18 bits for the 18-bit multiply, 36-bits for the 36-bit multiply, etc.) regardless of whether $sign_a$ or $sign_b$ set the operands as signed or unsigned numbers.

Table 2–15. Multiplier Signed Representation					
Data A Data B Result					
Unsigned	Unsigned	Unsigned			
Unsigned	Signed	Signed			
Signed	Unsigned	Signed			
Signed	Signed	Signed			


Pipeline/Post Multiply Register

The output of 9×9 - or 18×18 -bit multipliers can optionally feed a register to pipeline multiply-accumulate and multiply-add/subtract functions. For 36×36 -bit multipliers, this register will pipeline the multiplier function.

Adder/Output Blocks

The result of the multiplier sub-blocks are sent to the adder/output block which consist of an adder/subtractor/accumulator unit, summation unit, output select multiplexer, and output registers. The results are used to configure the adder/output block as a pure output, accumulator, a simple two-multiplier adder, four-multiplier adder, or final stage of the 36-bit multiplier. The designer can configure the adder/output block to use output registers in any mode, and must use output registers for the accumulator. The system cannot use adder/output blocks independently of the multiplier. Figure 2–34 shows the adder and output stages.

Figure 2–34. Adder/Output Blocks Note (1)

Notes to Figure 2-34:

- (1) Adder/output block shown in Figure 2–34 is in 18 × 18-bit mode. In 9 × 9-bit mode, there are four adder/subtractor blocks and two summation blocks.
- (2) These signals are either not registered, registered once, or registered twice to match the data path pipeline.

Adder/Subtractor/Accumulator

The adder/subtractor/accumulator is the first level of the adder/output block and can be used as an accumulator or as an adder/subtractor.

Adder/Subtractor

Each adder/subtractor/accumulator block can perform addition or subtraction using the addnsub independent control signal for each first-level adder in 18×18 -bit mode. There are two addnsub[1..0] signals available in a DSP block for any configuration. For 9×9 -bit mode, one addnsub[1..0] signal controls the top two one-level adders and another addnsub[1..0] signal controls the bottom two one-level adders. A high addnsub signal indicates addition, and a low signal indicates subtraction. The addnsub control signal can be unregistered or registered once or twice when feeding the adder blocks to match data path pipelines.

The signa and signb signals serve the same function as the multiplier block signa and signb signals. The only difference is that these signals can be registered up to two times. These signals are tied to the same signa and signb signals from the multiplier and must be connected to the same clocks and control signals.

Accumulator

When configured for accumulation, the adder/output block output feeds back to the accumulator as shown in Figure 2–34. The accum_sload[1..0] signal synchronously loads the multiplier result to the accumulator output. This signal can be unregistered or registered once or twice. Additionally, the overflow signal indicates the accumulator has overflowed or underflowed in accumulation mode. This signal is always registered and must be externally latched in LEs if the design requires a latched overflow signal.

Summation

The output of the adder/subtractor/accumulator block feeds to an optional summation block. This block sums the outputs of the DSP block multipliers. In 9 \times 9-bit mode, there are two summation blocks providing the sums of two sets of four 9 \times 9-bit multipliers. In 18 \times 18-bit mode, there is one summation providing the sum of one set of four 18 \times 18-bit multipliers.

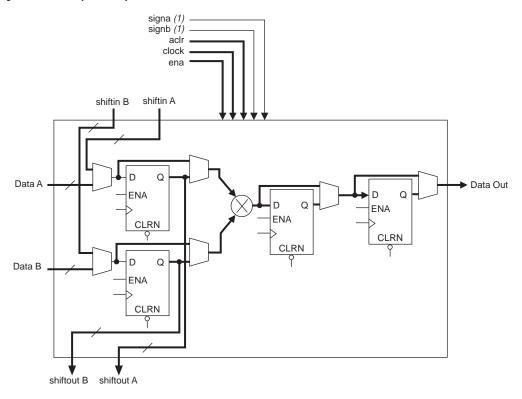
Output Selection Multiplexer

The outputs from the various elements of the adder/output block are routed through an output selection multiplexer. Based on the DSP block operational mode and user settings, the multiplexer selects whether the output from the multiplier, the adder/subtractor/accumulator, or summation block feeds to the output.

Output Registers

Optional output registers for the DSP block outputs are controlled by four sets of control signals: clock[3..0], aclr[3..0], and ena[3..0]. Output registers can be used in any mode.

Modes of Operation

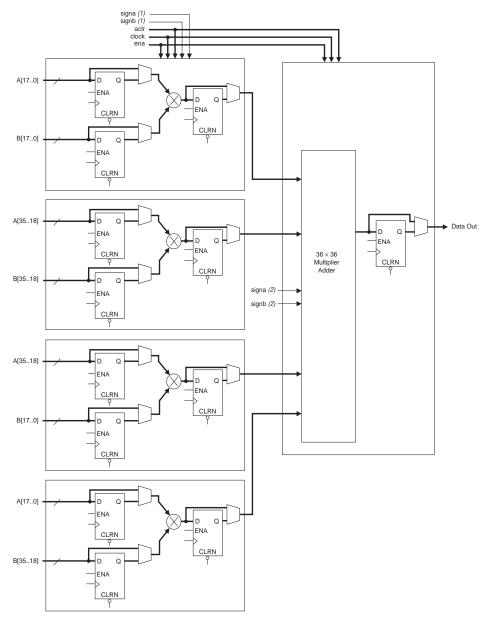

The adder, subtractor, and accumulate functions of a DSP block have four modes of operation:

- Simple multiplier
- Multiply-accumulator
- Two-multipliers adder
- Four-multipliers adder

Simple Multiplier Mode

In simple multiplier mode, the DSP block drives the multiplier sub-block result directly to the output with or without an output register. Up to four 18×18 -bit multipliers or eight 9×9 -bit multipliers can drive their results directly out of one DSP block. See Figure 2–35.

Figure 2-35. Simple Multiplier Mode

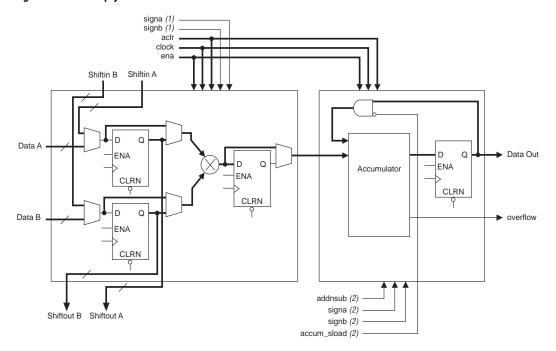


Note to Figure 2–35:

(1) These signals are not registered or registered once to match the data path pipeline.

DSP blocks can also implement one 36×36 -bit multiplier in multiplier mode. DSP blocks use four 18×18 -bit multipliers combined with dedicated adder and internal shift circuitry to achieve 36-bit multiplication. The input shift register feature is not available for the 36×36 -bit multiplier. In 36×36 -bit mode, the device can use the register that is normally a multiplier-result-output register as a pipeline stage for the 36×36 -bit multiplier. Figure 2–36 shows the 36×36 -bit multiply mode.

Figure 2-36. 36 × 36 Multiply Mode


Notes to Figure 2–36:

- (1) These signals are not registered or registered once to match the pipeline.
- (2) These signals are not registered, registered once, or registered twice for latency to match the pipeline.

Multiply-Accumulator Mode

In multiply-accumulator mode (see Figure 2–37), the DSP block drives multiplied results to the adder/subtractor/accumulator block configured as an accumulator. A designer can implement one or two multiply-accumulators up to 18×18 bits in one DSP block. The first and third multiplier sub-blocks are unused in this mode, since only one multiplier can feed one of two accumulators. The multiply-accumulator output can be up to 52 bits—a maximum of a 36-bit result with 16 bits of accumulation. The accum_sload and overflow signals are only available in this mode. The addnsub signal can set the accumulator for decimation and the overflow signal will indicate underflow condition.

Figure 2-37. Multiply-Accumulate Mode

Notes to Figure 2-37:

- (1) These signals are not registered or registered once to match the data path pipeline.
- (2) These signals are not registered, registered once, or registered twice for latency to match the data path pipeline.

Two-Multipliers Adder Mode

The two-multipliers adder mode uses the adder/subtractor/accumulator block to add or subtract the outputs of the multiplier block, which is useful for applications such as FFT functions and complex FIR filters. A

single DSP block can implement two sums or differences from two 18×18 -bit multipliers each or four sums or differences from two 9×9 -bit multipliers each.

Designers can use the two-multipliers adder mode for complex multiplications, which are written as:

$$(a+jb)\times(c+jd) = [(a\times c) - (b\times d)] + j\times[(a\times d) + (b\times c)]$$

The two-multipliers adder mode allows a single DSP block to calculate the real part $[(a \times c) - (b \times d)]$ using one subtractor and the imaginary part $[(a \times d) + (b \times c)]$ using one adder, for data widths up to 18 bits. Two complex multiplications are possible for data widths up to 9 bits using four adder/subtractor/accumulator blocks. Figure 2–38 shows an 18-bit two-multipliers adder.

Figure 2–38. Two-Multipliers Adder Mode Implementing Complex Multiply

Four-Multipliers Adder Mode

In the four-multipliers adder mode, the DSP block adds the results of two first -stage adder/subtractor blocks. One sum of four 18×18 -bit multipliers or two different sums of two sets of four 9×9 -bit multipliers can be implemented in a single DSP block. The product width for each multiplier must be the same size. The four-multipliers adder mode is useful for FIR filter applications. Figure 2–39 shows the four multipliers adder mode.

Q Adder/Subtractor ▶ Data Out -ENA addnsub1 (2) Summation signa (2) signb (2) addnsub3 (2) Q Q

Figure 2-39. Four-Multipliers Adder Mode

Notes to Figure 2-39:

- (1) These signals are not registered or registered once to match the data path pipeline.
- (2) These signals are not registered, registered once, or registered twice for latency to match the data path pipeline.

For FIR filters, the DSP block combines the four-multipliers adder mode with the shift register inputs. One set of shift inputs contains the filter data, while the other holds the coefficients loaded in serial or parallel. The input shift register eliminates the need for shift registers external to the DSP block (i.e., implemented in LEs). This architecture simplifies filter design since the DSP block implements all of the filter circuitry.

One DSP block can implement an entire 18-bit FIR filter with up to four taps. For FIR filters larger than four taps, DSP blocks can be cascaded with additional adder stages implemented in LEs.

Table 2–16 shows the different number of multipliers possible in each DSP block mode according to size. These modes allow the DSP blocks to implement numerous applications for DSP including FFTs, complex FIR, FIR, and 2D FIR filters, equalizers, IIR, correlators, matrix multiplication and many other functions.

Table 2–16. Multiplier Size & Configurations per DSP block					
DSP Block Mode	9 × 9	18 × 18	36 × 36 (1)		
Multiplier	Eight multipliers with eight product outputs	Four multipliers with four product outputs	One multiplier with one product output		
Multiply-accumulator	Two multiply and accumulate (52 bits)	Two multiply and accumulate (52 bits)	_		
Two-multipliers adder	Four sums of two multiplier products each	Two sums of two multiplier products each	_		
Four-multipliers adder	Two sums of four multiplier products each	One sum of four multiplier products each	-		

Note to Table 2–16:

 The number of supported multiply functions shown is based on signed/signed or unsigned/unsigned implementations.

DSP Block Interface

Stratix device DSP block outputs can cascade down within the same DSP block column. Dedicated connections between DSP blocks provide fast connections between the shift register inputs to cascade the shift register chains. The designer can cascade DSP blocks for 9 \times 9- or 18 \times 18-bit FIR filters larger than four taps, with additional adder stages implemented in LEs. If the DSP block is configured as 36 \times 36 bits, the adder, subtractor, or accumulator stages are implemented in LEs. Each DSP block can route the shift register chain out of the block to cascade two full columns of DSP blocks.

The DSP block is divided into eight block units that interface with eight LAB rows on the left and right. Each block unit can be considered half of an 18 × 18-bit multiplier sub-block with 18 inputs and 18 outputs. A local interconnect region is associated with each DSP block. Like an LAB, this interconnect region can be fed with 10 direct link interconnects from the LAB to the left or right of the DSP block in the same row. All row and column routing resources can access the DSP block's local interconnect region. The outputs also work similarly to LAB outputs as well. Nine outputs from the DSP block can drive to the left LAB through direct link interconnects and nine can drive to the right LAB though direct link interconnects. All 18 outputs can drive to all types of row and column routing. Outputs can drive right- or left-column routing. Figures 2–40 and 2–41 show the DSP block interfaces to LAB rows.

DSP Block OA[17..0] MultiTrack MultiTrack Interconnect Interconnect A1[17..0] OB[17..0] B1[17..0] OC[17..0] A2[17..0] OD[17..0] B2[17..0] OE[17..0] A3[17..0] OF[17..0] B3[17..0] OG[17..0] A4[17..0] OH[17..0]

B4[17..0]

Figure 2-40. DSP Block Interconnect Interface

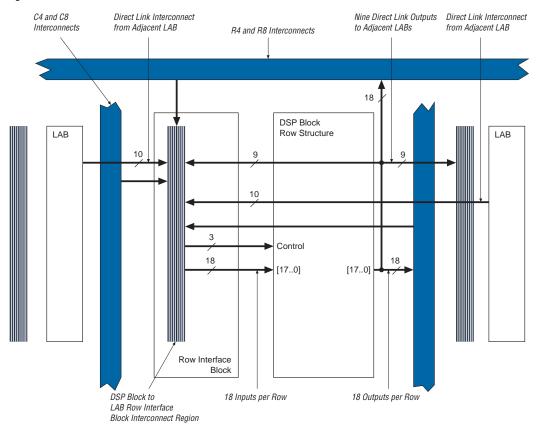


Figure 2-41. DSP Block Interface to Interconnect

A bus of 18 control signals feeds the entire DSP block. These signals include clock[0..3] clocks, aclr[0..3] asynchronous clears, ena[1..4] clock enables, signa, signb signed/unsigned control signals, addnsub1 and addnsub3 addition and subtraction control signals, and accum sload[0..1] accumulator synchronous loads. The

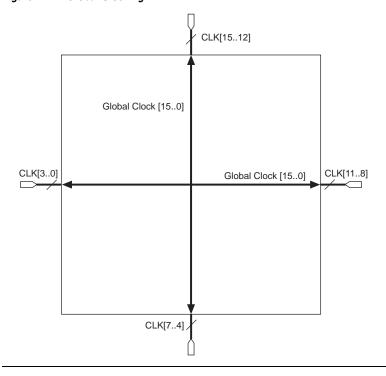
clock signals are routed from LAB row clocks and are generated from specific LAB rows at the DSP block interface. The LAB row source for control signals, data inputs, and outputs is shown in Table 2–17.

Table 2–17. DSP Block Signal Sources & Destinations					
LAB Row at Interface	Control Signals Generated	Data Inputs	Data Outputs		
1	signa	A1[170]	OA[170]		
2	aclr0 accum_sload0	B1[170]	ОВ[170]		
3	addnsub1 clock0 ena0	A2[170]	OC[170]		
4	aclr1 clock1 ena1	B2[170]	OD[170]		
5	aclr2 clock2 ena2	A3[170]	OE[170]		
6	sign_b clock3 ena3	B3[170]	OF[170]		
7	clear3 accum_sload1	A4[170]	OG[170]		
8	addnsub3	B4[170]	ОН[170]		

PLLs & Clock Networks

Stratix devices provide a hierarchical clock structure and multiple PLLs with advanced features. The large number of clocking resources in combination with the clock synthesis precision provided by enhanced and fast PLLs provides a complete clock management solution.

Global & Hierarchical Clocking


Stratix devices provide 16 dedicated global clock networks, 16 regional clock networks (four per device quadrant), and 8 dedicated fast regional clock networks. These clocks are organized into a hierarchical clock structure that allows for up to 22 clocks per device region with low skew and delay. This hierarchical clocking scheme provides up to 48 unique clock domains within Stratix devices.

There are 16 dedicated clock pins (CLK [15..0]) to drive either the global or regional clock networks. Four clock pins drive each side of the device, as shown in Figures 2–42 and 2–43. Enhanced and fast PLL outputs can also drive the global and regional clock networks.

Global Clock Network

These clocks drive throughout the entire device, feeding all device quadrants. The global clock networks can be used as clock sources for all resources within the device—IOEs, LEs, DSP blocks, and all memory blocks. These resources can also be used for control signals, such as clock enables and synchronous or asynchronous clears fed from the external pin. The global clock networks can also be driven by internal logic for internally generated global clocks and asynchronous clears, clock enables, or other control signals with large fanout. Figure 2–42 shows the 16 dedicated CLK pins driving global clock networks.

Figure 2-42. Global Clocking

Regional Clock Network

There are four regional clock networks RCLK[3..0] within each quadrant of the Stratix device that are driven by the same dedicated CLK[15..0] input pins or from PLL outputs. The regional clock networks only pertain to the quadrant they drive into. The regional clock networks provide the lowest clock delay and skew for logic contained within a single quadrant. The CLK clock pins symmetrically drive the RCLK networks within a particular quadrant, as shown in Figure 2–43.

RCLK[1..0]

CLK[3..0]

CLK[3..2]

RCLK[3..2]

RCLK[3..2]

RCLK[3..2]

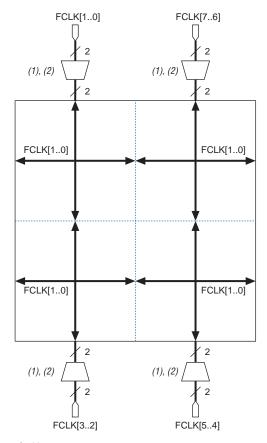
RCLK[3..2]

RCLK[5..4]

Regional Clocks Only Drive a Device Quadrant from Specified CLK Pins or PLLs within that Quadrant

RCLK[5..4]

RCLK[7..6]


Figure 2-43. Regional Clocks

Fast Regional Clock Network

In EP1S25, EP1S20, and EP1S10 devices, there are two fast regional clock networks, FCLK [1..0], within each quadrant, fed by input pins that can connect to fast regional clock networks (see Figure 2–44). In EP1S30 and larger devices, there are two fast regional clock networks within each half-quadrant (see Figure 2–45). Dual-purpose FCLK pins drive the fast clock networks. All devices have eight FCLK pins to drive fast regional

clock networks. Any I/O pin can drive a clock or control signal onto any fast regional clock network with the addition of a delay. This signal is driven via the I/O interconnect.

Figure 2–44. EP1S25, EP1S20 & EP1S10 Device Fast Clock Pin Connections to Fast Regional Clocks

Notes to Figure 2-44:

- (1) This is a set of two multiplexers.
- (2) In addition to the FCLK pin inputs, there is also an input from the I/O interconnect.

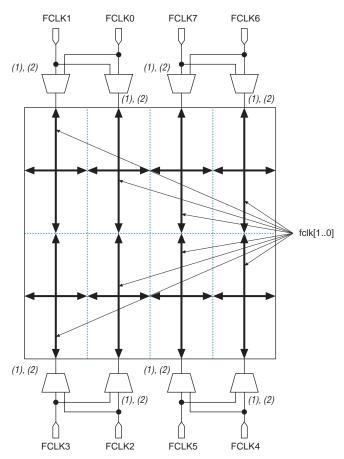
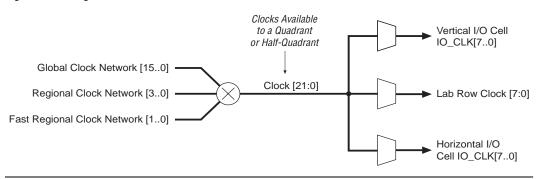


Figure 2–45. EP1S30 Device Fast Regional Clock Pin Connections to Fast Regional Clocks


Notes to Figure 2-45:

- (1) This is a set of two multiplexers.
- (2) In addition to the FCLK pin inputs, there is also an input from the I/O interconnect.

Combined Resources

Within each region, there are 22 distinct dedicated clocking resources consisting of 16 global clock lines, four regional clock lines, and two fast regional clock lines. Multiplexers are used with these clocks to form eight bit busses to drive LAB row clocks, column IOE clocks, or row IOE clocks. Another multiplexer is used at the LAB level to select two of the eight row clocks to feed the LE registers within the LAB. See Figure 2–46.

Figure 2-46. Regional Clock Bus

IOE clocks have horizontal and vertical block regions that are clocked by eight I/O clock signals chosen from the 22 quadrant or half-quadrant clock resources. Figures 2–47 and 2–48 show the quadrant and half-quadrant relationship to the I/O clock regions, respectively. The vertical regions (column pins) have less clock delay than the horizontal regions (row pins).

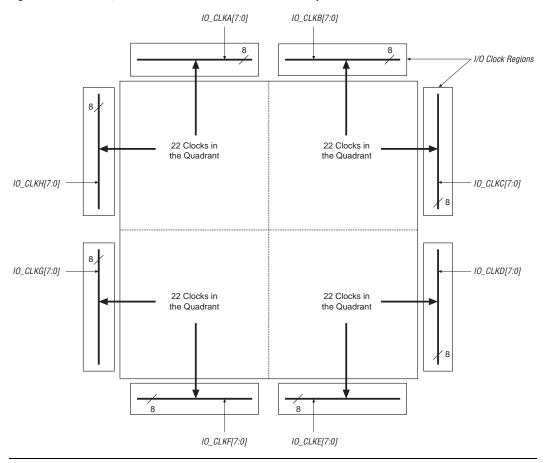


Figure 2-47. EP1S10, EP1S20 & EP1S25 Device I/O Clock Groups



Figure 2-48. EP1S30, EP1S40, EP1S60, EP1S80 Device I/O Clock Groups

Designers can use the Quartus II software to control whether a clock input pin is either global, regional, or fast regional. The Quartus II software automatically selects the clocking resources if not specified.

Enhanced & Fast PLLs

Stratix devices provide robust clock management and synthesis using up to four enhanced PLLs and eight fast PLLs. These PLLs increase performance and provide advanced clock interfacing and clock-frequency synthesis. With features such as clock switchover, spread spectrum clocking, programmable bandwidth, phase and delay control, and PLL reconfiguration, the Stratix device's enhanced PLLs provide designers with complete control of their clocks and system timing. The

fast PLLs provide general purpose clocking with multiplication and phase shifting as well as high-speed outputs for high-speed differential I/O support. Enhanced and fast PLLs work together with the Stratix high-speed I/O and advanced clock architecture to provide significant improvements in system performance and bandwidth.

The Quartus II software enables the PLLs and their features without requiring any external devices. Tables 2–18 and 2–19 show the PLLs available for each Stratix device, respectively, and their type.

Table 2–18.	Table 2–18. Stratix Device PLL Availability											
Davisa				Fast	PLLs				Enhanced PLLs			
Device	1	2	3	4	7	8	9	10	5(1)	6(1)	11 (2)	12 (2)
EP1S10	✓	✓	✓	✓					✓	✓		
EP1S20	✓	✓	✓	✓					✓	✓		
EP1S25	✓	✓	✓	✓					✓	✓		
EP1S30	✓	✓	✓	✓	√ (3)	√ (3)	√ (3)	√ (3)	✓	✓		
EP1S40	✓	✓	✓	✓	√ (3)	√ (3)	√ (3)	√ (3)	✓	✓	✓	✓
EP1S60	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
EP1S80	✓	\	\	✓	✓	✓	✓	✓	\	✓	✓	✓

Notes to Table 2-18:

- (1) PLLs 5 and 6 each have eight single-ended outputs or four differential outputs.
- (2) PLLs 11 and 12 each have one single-ended output.
- (3) EP1S30 and EP1S40 devices do not support these PLLs in the 780-pin FineLine BGA® package.

Table 2–19. S	Table 2–19. Stratix Device PLL Availability							
Davies		Fast	PLLs		Enhanced PLLs			
Device	1	2	7	8	5	6	11	12
EP1S10C	✓	✓			✓	✓		
EP1S10D	✓	✓			✓	✓		
EP1S25C	✓	✓			✓	✓		
EP1S25D	✓	✓			✓	✓		
EP1S25F	✓	✓			✓	✓		
EP1S40D	✓	✓	✓	✓	✓	✓	✓	✓
EP1S40G	✓	✓	✓	✓	✓	✓	✓	✓

Table 2–20 shows the enhanced PLL and fast PLL features in Stratix devices.

Table 2–20. Stratix PLL Feature	- 	
Feature	Enhanced PLL	Fast PLL
Clock multiplication and division	$m/(n \times post-scale counter)$ (1)	m/(post-scale counter) (2)
Phase shift	Down to 156.25-ps increments (3), (4)	Down to 125-ps increments (3), (4)
Delay shift	250-ps increments for ±3 ns	
Clock switchover	✓	
PLL reconfiguration	✓	
Programmable bandwidth	✓	
Spread spectrum clocking	✓	
Programmable duty cycle	✓	✓
Number of internal clock outputs	6	3 (5)
Number of external clock outputs	Four differential/eight singled-ended or one single-ended (6)	(7)
Number of feedback clock inputs	2 (8)	

Notes to Table 2-20:

- (1) For enhanced PLLs, *m*, *n*, and post-scale counters range from 1 to 512.
- (2) For fast PLLs, *m*, *n*, and post-scale counters range from 1 to 32.
- (3) The smallest phase shift is determined by the voltage controlled oscillator (VCO) period divided by 8.
- (4) For degree increments, Stratix devices can shift all output frequencies in increments of at least 45°. Smaller degree increments are possible depending on the frequency and divide parameters.
- (5) PLLs 7, 8, 9, and 10 have two output ports per PLL. PLLs 1, 2, 3, and 4 have three output ports per PLL.
- (6) Every Stratix device has two enhanced PLLs (PLLs 5 and 6) with either eight single-ended outputs or four differential outputs each. Two additional enhanced PLLs (PLLs 11 and 12) in EP1S80, EP1S60, EP1S40 devices each have one single-ended output.
- (7) Fast PLLs can drive to any I/O pin as an external clock. For high-speed differential I/O pins, the device uses a data channel to generate txclkout.
- (8) Every Stratix device has two enhanced PLLs with one single-ended or differential external feedback input per PLL.

Figure 2–49 shows a top-level diagram of the Stratix device and PLL floorplan.

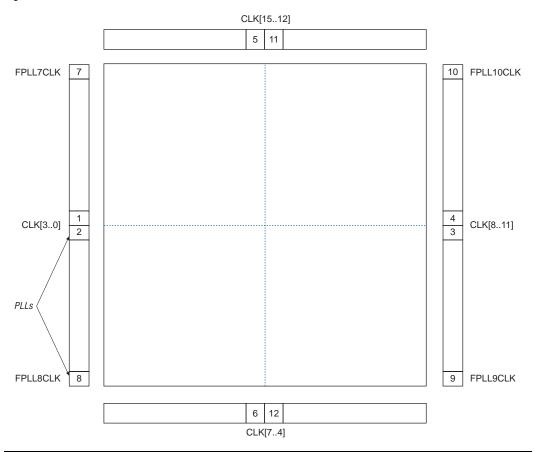
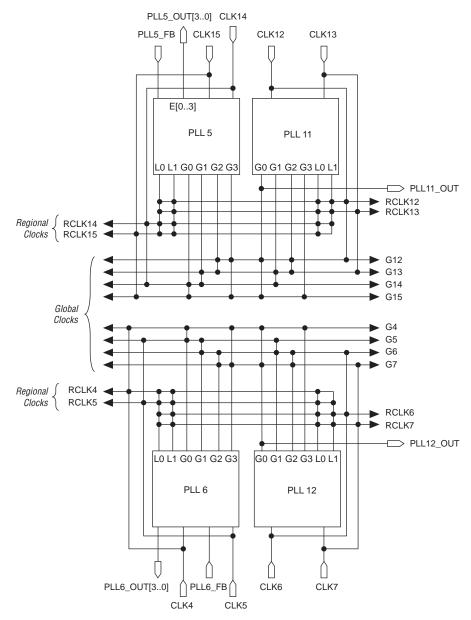


Figure 2–50 shows the global and regional clocking from the PLL outputs and the CLK pins.

RCLK1 RCLK11 G1 G3 G8 G10 G2 🛕 G9 🛦 G11 🛦 RCLK0 ▲ GO RCLK10 FPLL7CLK _ ☐ FPLL10CLK 10 PLL 7 /1 /1 PLL 10 *g*0 *g*0 CLK10 CLK0 □ 10 10 CLK1 ☐ CLK11 PLL 1 /1 /1 PLL 4 *g*0 *g*0 □ CLK8 CLK2 □ 10 /1 PLL 3 PLL 2 /1 *g*0 *g*0 PLL 8 /1 /1 PLL 9 *g*0 FPLL8CLK [□ FPLL9CLK RCLK2 ₩ RCLK8 RCLK9 RCLK3 Global Clocks Regional Regional Clocks Clocks

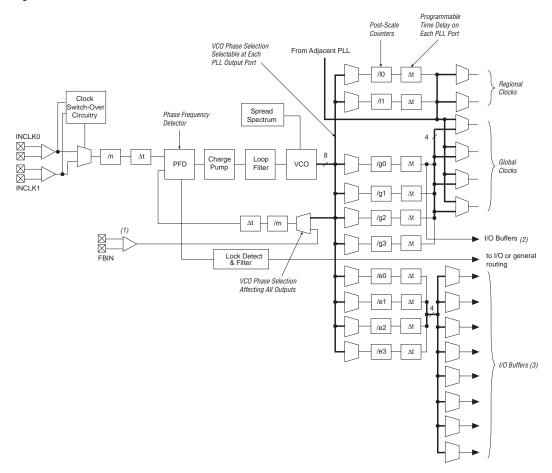

Figure 2–50. Global & Regional Clock Connections from Side Pins & Fast PLL Outputs Note (1)

Notes to Figure 2–50:

- (1) PLLs 1 to 4 and 7 to 10 are fast PLLs. PLLs 5, 6, 11, and 12 are enhanced PLLs.
- (2) The global or regional clocks in a fast PLL's quadrant can drive the fast PLL input. A pin or other PLL must drive the global or regional source. The source cannot be driven by internally generated logic before driving the fast PLL.
- (3) PLLs 3, 4, 9, and 10 are used for the HSSI block in Stratix devices and are not available for this use.

Figure 2–51 shows the global and regional clocking from enhanced PLL outputs and top CLK pins.

Figure 2–51. Global & Regional Clock Connections from Top Clock Pins & Enhanced PLL Outputs Note (1)


Notes to Figure 2-51:

- (1) PLLs 1 to 4 and 7 to 10 are fast PLLs. PLLs 5, 6, 11, and 12 are enhanced PLLs.
- (2) CLK4, CLK6, CLK12, and CLK14 feed the corresponding PLL's inclk0 port.
- (3) CLK5, CLK7, CLK13, and CLK15 feed the corresponding PLL's inclk1 port.

Enhanced PLLs

Stratix devices contain up to four enhanced PLLs with advanced clock management features. Figure 2–52 shows a diagram of the enhanced PLL.

Figure 2-52. Stratix Enhanced PLL

Notes to Figure 2–52:

- (1) External feedback is available in PLLs 5 and 6.
- (2) This single-ended external output is available from the g0 counter for PLLs 11 and 12.
- (3) These four counters and external outputs are available in PLLs 5 and 6.
- (4) This connection is only available on EP1S40 and larger Stratix devices. For example, PLLs 5 and 11 are adjacent and PLLs 6 and 12 are adjacent.

Clock Multiplication & Division

Each Stratix device enhanced PLL provides clock synthesis for PLL output ports using $m/(n \times post\text{-scale counter})$ scaling factors. The input clock is divided by a pre-scale divider, *n*, and is then multiplied by the *m* feedback factor. The control loop drives the VCO to match $f_{IN} \times (m/n)$. Each output port has a unique post-scale counter that divides down the high-frequency VCO. For multiple PLL outputs with different frequencies, the VCO is set to the least common multiple of the output frequencies that meets its frequency specifications. Then, the post-scale dividers scale down the output frequency for each output port. For example, if output frequencies required from one PLL are 33 and 66 MHz, set the VCO to 330 MHz (the least common multiple in the VCO's range). There is one pre-scale divider, *n*, and one multiply divider, *m*, per PLL, with a range of 1 to 512 on each. There are two post-scale dividers (*l*) for regional clock output ports, four counters (g) for global clock output ports, and up to four counters (e) for external clock outputs, all ranging from 1 to 512. The Quartus II software automatically chooses the appropriate scaling factors according to the input frequency, multiplication, and division values entered.

Clock Switchover

To effectively develop high-reliability network systems, clocking schemes must support multiple clocks to provide redundancy. For this reason, Stratix device enhanced PLLs support a flexible clock switchover capability. Figure 2–53 shows a block diagram of the switchover circuit. The switchover circuit is configurable, so the designer can define how to implement it. Clock-sense circuitry automatically switches from the primary to secondary clock for PLL reference when the primary clock signal is not present.

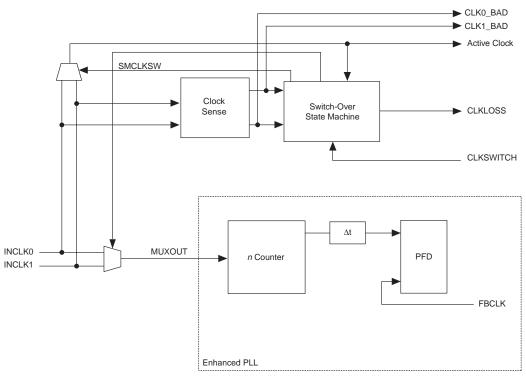


Figure 2-53. Clock Switchover Circuitry

Note to Figure 2–53:
(1) PFD: phase frequency detector.

There are two possible ways to use the clock switch-over feature.

- Designers can use automatic switch-over circuitry for switching between inputs of the same frequency. For example, in applications that require a redundant clock with the same frequency as the primary clock, the switchover state machine generates a signal that controls the multiplexer select input on the bottom of Figure 2–53. In this case, the secondary clock becomes the reference clock for the PLL.
- Designers can use the clkswitch input for user- or systemcontrolled switch conditions. This is possible for same-frequency switchover or to switch between inputs of different frequencies. For example, if inclk0 is 66 MHz and inclk1 is 100 MHz, the designer must control the switchover because the automatic clock-sense circuitry cannot monitor primary and secondary clock frequencies

with a frequency difference of more than ±20%. This feature is useful when clock sources can originate from multiple cards on the backplane, requiring a system-controlled switchover between frequencies of operation. The designer can use clkswitch together with the lock signal to trigger the switch from a clock that is running but becomes unstable and cannot be locked onto.

During switch over, the PLL VCO continues to run and will either slow down or speed up, generating frequency drift on the PLL outputs. The clock switchover transitions without any glitches. After the switch, there is a finite resynchronization period to lock onto new clock as the VCO ramps up. The exact amount of time it takes for the PLL to relock relates to the PLL configuration and may be adjusted by using the programmable bandwidth feature of the PLL. The preliminary specification for the maximum time to relock is $100~\mu s$.

PLL Reconfiguration

The PLL reconfiguration feature enables system logic to change Stratix device enhanced PLL counters and delay elements without reloading a Programmer Object File (.pof). This provides considerable flexibility for frequency synthesis, allowing real-time PLL frequency and output clock delay variation. The designer can sweep the PLL output frequencies and clock delay in prototype environments. The PLL reconfiguration feature can also dynamically or intelligently control system clock speeds or $t_{\rm CO}$ delays in end systems.

Clock delay elements at each PLL output port implement variable delay. Figure 2–54 shows a diagram of the overall dynamic PLL control feature for the counters and the clock delay elements. The configuration time is less than 20 µs for the enhanced PLL using a input shift clock rate of 25 MHz. The charge pump, loop filter components, and phase shifting using VCO phase taps cannot be dynamically adjusted.

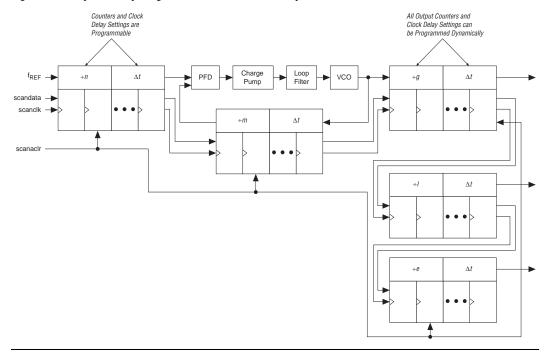


Figure 2–54. Dynamically Programmable Counters & Delays in Stratix Device Enhanced PLLs

PLL reconfiguration data is shifted into serial registers from the logic array or external devices. The PLL input shift data uses a reference input shift clock. Once the last bit of the serial chain is clocked in, the register chain is synchronously loaded into the PLL configuration bits. The shift circuitry also provides an asynchronous clear for the serial registers.

Programmable Bandwidth

The designer has advanced control of the PLL bandwidth using the programmable control of the PLL loop characteristics, including loop filter and charge pump. The PLL's bandwidth is a measure of its ability to track the input clock and jitter. A high-bandwidth PLL can quickly lock onto a reference clock and react to any changes in the clock. It also will allow a wide band of input jitter spectrum to pass to the output. A low-bandwidth PLL will take longer to lock, but it will attenuate all high-frequency jitter components. The Quartus II software can adjust PLL characteristics to achieve the desired bandwidth. The programmable bandwidth is tuned by varying the charge pump current, loop filter

resistor value, high frequency capacitor value, and $\it m$ counter value. Designers can manually adjust these values if desired. Bandwidth is programmable from 200 kHz to 1.5 MHz.

External Clock Outputs

Enhanced PLLs 5 and 6 each support up to eight single-ended clock outputs (or four differential pairs). See Figure 2–55.

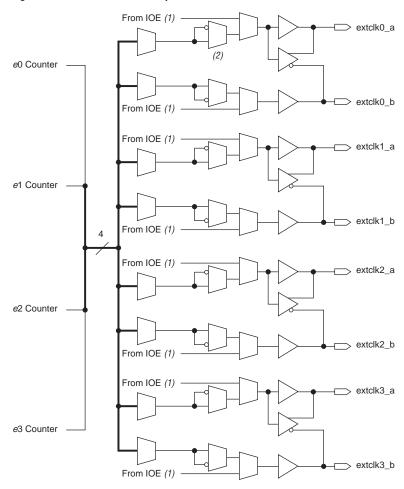


Figure 2-55. External Clock Outputs for PLLs 5 & 6

Notes to Figure 2-55:

- The design can use each external clock output pin as a general-purpose output pin from the logic array. These pins are multiplexed with IOE outputs.
- (2) Two single-ended outputs are possible per output counter—either two outputs of the same frequency and phase or one shifted 180°.
- (3) EP1S10, EP1S20, and EP1S25 devices in 672-pin BGA and 484- and 672-pin FineLine BGA packages only have two pairs of external clocks (i.e., pll_out0p, pll_out0n, pll_out1p, and pll_out1n).

Any of the four external output counters can drive the single-ended or differential clock outputs for PLLs 5 and 6. This means one counter or frequency can drive all output pins available from PLL 5 or PLL 6. Each

pair of output pins (four pins total) has dedicated VCC and GND pins to reduce the output clock's overall jitter by providing improved isolation from switching I/O pins.

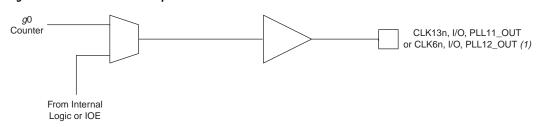

For PLLs 5 and 6, each pin of a single-ended output pair can either be in phase or 180° out of phase. The clock output pin pairs support the same I/O standards as standard output pins (in the top and bottom banks) as well as LVDS, LVPECL, 3.3-V PCML, HyperTransport technology, differential HSTL, and differential SSTL. Table 2–21 shows which I/O standards the enhanced PLL clock pins support. When in single-ended or differential mode, the two outputs operate off the same power supply. Both outputs use the same standards in single-ended mode to maintain performance. Designers can also use the external clock output pins as user output pins if external enhanced PLL clocking is not needed.

Table 2–21. I/O Standards Supported for Enhanced PLL Pins (Part 1 of 2)				
I/O Ctondovd		Output		
I/O Standard	INCLK	FBIN	PLLENABLE	EXTCLK
LVTTL	✓	✓	✓	✓
LVCMOS	✓	✓	✓	✓
2.5 V	✓	✓		✓
1.8 V	✓	✓		✓
1.5 V	✓	~		✓
3.3-V PCI	✓	✓		✓
3.3-V PCI-X 1.0	✓	~		✓
LVPECL	✓	✓		✓
3.3-V PCML	✓	✓		✓
LVDS	✓	✓		✓
HyperTransport technology	✓	✓		✓
Differential HSTL	✓			✓
Differential SSTL				✓
3.3-V GTL	✓	✓		✓
3.3-V GTL+	✓	✓		✓
1.5-V HSTL class I	✓	✓		✓
1.5-V HSTL class II	✓	✓		✓
1.8-V HSTL class I	✓	✓		✓

Table 2–21. I/O Standards Supported for Enhanced PLL Pins (Part 2 of 2)						
1/0 04		Input				
I/O Standard	INCLK	FBIN	PLLENABLE	EXTCLK		
1.8-V HSTL class II	✓	✓		✓		
SSTL-18 class I	✓	✓		✓		
SSTL-18 class II	✓	✓		✓		
SSTL-2 class I	✓	✓		✓		
SSTL-2 class II	✓	✓		✓		
SSTL-3 class I	✓	✓		✓		
SSTL-3 class II	✓	✓		✓		
AGP (1× and 2×)	✓	✓		✓		
СТТ	✓	✓		✓		

Enhanced PLLs 11 and 12 support one single-ended output each (see Figure 2–56). These outputs do not have their own VCC and GND signals. Therefore, to minimize jitter, do not place switching I/O pins next to this output pin.

Figure 2-56. External Clock Outputs for Enhanced PLLs 11 & 12

Note to Figure 2-56:

(1) For PLL 11, this pin is CLK13n; for PLL 12 this pin is CLK7n.

Stratix devices can drive any enhanced PLL driven through the global clock or regional clock network to any general I/O pin as an external output clock. The jitter on the output clock is not guaranteed for these cases.

Clock Feedback

The following four feedback modes in Stratix device enhanced PLLs allow multiplication and/or phase and delay shifting:

Zero delay buffer: The external clock output pin is phase-aligned with the clock input pin for zero delay.

- External feedback: The external feedback input pin, FBIN, is phasealigned with the clock input, CLK, pin. Aligning these clocks allows the designer to remove clock delay and skew between devices. This mode is only possible for PLLs 5 and 6. PLLs 5 and 6 each support feedback for one of the dedicated external outputs, either one singleended or one differential pair. In this mode, one *e* counter feeds back to the PLL FBIN input, becoming part of the feedback loop.
- Normal mode: If an internal clock is used in this mode, it is phasealigned to the input clock pin. The external clock output pin will have a phase delay relative to the clock input pin if connected in this mode. The designer defines which internal clock output from the PLL should be phase-aligned to the internal clock pin.
- No compensation: In this mode, the PLL will not compensate for any clock networks or external clock outputs.

Phase & Delay Shifting

Stratix device enhanced PLLs provide advanced programmable phase and clock delay shifting. These parameters are set in the Quartus II software.

Phase Delay

The Quartus II software automatically sets the phase taps and counter settings according to the phase shift entry. The designer enters a desired phase shift and the Quartus II software automatically sets the closest setting achievable. This type of phase shift is not reconfigurable during system operation. For phase shifting, enter a phase shift (in degrees or time units) for each PLL clock output port or for all outputs together in one shift. Designers can select phase-shifting values in time units with a resolution of 156.25 to 416.66 ps. This resolution is a function of frequency input and the multiplication and division factors (i.e., it is a function of the VCO period), with the finest step being equal to an eighth (×0.125) of the VCO period. Each clock output counter can choose a different phase of the VCO period from up to eight taps for individual fine step selection. Also, each clock output counter can use a unique initial count setting to achieve individual coarse shift selection in steps of one VCO period. The combination of coarse and fine shifts allows phase shifting for the entire input clock period.

The equation to determine the precision of the phase shifting in degrees is: 45° ÷ post-scale counter value. Therefore, the maximum step size is 45° , and smaller steps are possible depending on the multiplication and division ratio necessary on the output counter port.

This type of phase shift provides the highest precision since it is the least sensitive to process, supply, and temperature variation.

Clock Delay

In addition to the phase shift feature, the ability to fine tune the Δt clock delay provides advanced time delay shift control on each of the four PLL outputs. There are time delays for each post-scale counter (e, g, or l) from the PLL, the n counter, and m counter. Each of these can shift in 250-ps increments for a range of 3.0 ns. The m delay shifts all outputs earlier in time, while n delay shifts all outputs later in time. Individual delays on post-scale counters (e, g, and l) provide positive delay for each output. Table 2–22 shows the combined delay for each output for normal or zero delay buffer mode where Δt_e , Δt_o , or Δt_l is unique for each PLL output.

The t_{OUTPUT} for a single output can range from -3 ns to +6 ns. The total delay shift difference between any two PLL outputs, however, must be less than ± 3 ns. For example, shifts on two outputs of -1 and +2 ns is allowed, but not -1 and +2.5 ns because these shifts would result in a difference of 3.5 ns. If the design uses external feedback, the Δt_e delay will remove delay from outputs, represented by a negative sign (see Table 2–22). This effect occurs because the Δt_e delay is then part of the feedback loop.

Table 2–22. Output Clock Delay for Enhanced PLLs				
Normal or Zero Delay Buffer Mode External Feedback Mode				
$\begin{split} \Delta \mathbf{t}_{\text{6OUTPUT}} &= \Delta \mathbf{t}_n - \Delta \mathbf{t}_m + \Delta \mathbf{t}_{\text{6}} \\ \Delta \mathbf{t}_{\text{gOUTPUT}} &= \Delta \mathbf{t}_n - \Delta \mathbf{t}_m + \Delta \mathbf{t}_g \\ \Delta \mathbf{t}_{\text{OUTPUT}} &= \Delta \mathbf{t}_n - \Delta \mathbf{t}_m + \Delta \mathbf{t}_l \end{split}$	$\begin{split} \Delta t_{\text{6OUTPUT}} &= \Delta t_n - \Delta t_m - \Delta t_e \ (1) \\ \Delta t_{\text{9OUTPUT}} &= \Delta t_n - \Delta t_m + \Delta t_g \\ \Delta t_{\text{OUTPUT}} &= \Delta t_n - \Delta t_m + \Delta t_l \end{split}$			

Note to Table 2–22:

(1) Δt_e removes delay from outputs in external feedback mode.

The variation due to process, voltage, and temperature is about $\pm 15\%$ on the delay settings. PLL reconfiguration can control the clock delay shift elements, but not the VCO phase shift multiplexers, during system operation.

Spread-Spectrum Clocking

Stratix device enhanced PLLs use spread-spectrum technology to reduce electromagnetic interference generation from a system by distributing the energy over a broader frequency range. The enhanced PLL typically provides 0.5% down spread modulation using a triangular profile. The modulation frequency is programmable. Enabling spread-spectrum for a PLL affects all of its outputs.

Lock Detect

The lock output indicates that there is a stable clock output signal in phase with the reference clock. The locked port can drive the logic array or an output pin.

If the input clock stops and causes the PLL to lose lock, then the PLL must be reset for correct phase shift operation.

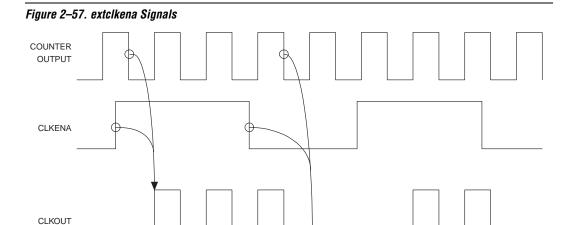
See the *Stratix FPGA Errata Sheet* for more information on implementing the gated lock signal in your design.

Programmable Duty Cycle

The programmable duty cycle allows enhanced PLLs to generate clock outputs with a variable duty cycle. This feature is supported on each enhanced PLL post-scale counter (*g*0..*g*3, *l*0..*l*3, *e*0..*e*3). The duty cycle setting is achieved by a low and high time count setting for the post-scale dividers. The Quartus II software uses the frequency input and the required multiply or divide rate to determine the duty cycle choices.

Advanced Clear & Enable Control

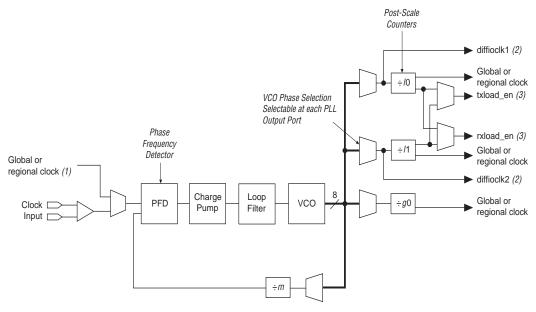
There are several control signals for clearing and enabling PLLs and their outputs. The designer can use these signals to control PLL resynchronization and gate PLL output clocks for low-power applications.


The pllenable pin is a dedicated pin that enables/disables PLLs. When the pllenable pin is low, the clock output ports are driven by GND and all the PLLs go out of lock. When the pllenable pin goes high again, the PLLs relock and resynchronize to the input clocks. The designer can choose which PLLs are controlled by the pllenable signal by connecting the pllenable input port of the altpll megafunction to the common pllenable input pin.

The areset signals are reset/resynchronization inputs for each PLL. The device input pins or logic elements (LEs) can drive these input signals. When driven high, the PLL counters will reset, clearing the PLL output and placing the PLL out of lock. The VCO will set back to its nominal setting (~700 MHz). When driven low again, the PLL will resynchronize to its input as it relocks. If the target VCO frequency is below this nominal frequency, then the output frequency will start at a higher value than desired as the PLL locks. If the system cannot tolerate this, the clkena signal can disable the output clocks until the PLL locks.

The pfdena signals control the phase frequency detector (PFD) output with a programmable gate. If the designer disables the PFD, the VCO will operate at its last set value of control voltage and frequency with some long-term drift to a lower frequency. The system will continue running when the PLL goes out of lock or the input clock is disabled. By maintaining the last locked frequency, the system has time to store its current settings before shutting down. Designers can either use their own control signal or clkloss or gated locked status signals to trigger pdfena.

The clkena signals control the enhanced PLL regional and global outputs. Each regional and global output port has its own clkena signal. The clkena signals synchronously disable or enable the clock at the PLL output port by gating the outputs of the g and l counters. The clkena signals are registered on the falling edge of the counter output clock to enable or disable the clock without glitches. Figure 2–57 shows the waveform example for a PLL clock port enable. The PLL can remain locked independent of the clkena signals since the loop-related counters are not affected. This feature is useful for applications that require a low power or sleep mode. Upon re-enabling, the PLL does not need a resynchronization or relock period. The clkena signal can also disable clock outputs if the system is not tolerant to frequency overshoot during resynchronization.


The extclkena signals work in the same way as the clkena signals, but they control the external clock output counters (e0, e1, e2, and e3). Upon re-enabling, the PLL does not need a resynchronization or relock period unless the PLL is using external feedback mode. In order to lock in external feedback mode, the external output must drive the board trace back to the FBIN pin.

Fast PLLs

Stratix devices contain up to eight fast PLLs with high-speed serial interfacing ability, along with general-purpose features. Figure 2–58 shows a diagram of the fast PLL.

Figure 2-58. Stratix Device Fast PLL

Notes to Figure 2–58:

- (1) The global or regional clock input can be driven by an output from another PLL or a pin-driven global or regional clock. It cannot be driven by internally-generated global signals.
- (2) In high-speed differential I/O support mode, this high-speed PLL clock feeds the SERDES. Stratix devices only support one rate of data transfer per fast PLL in high-speed differential I/O support mode.
- (3) This signal is a high-speed differential I/O support SERDES control signal.

Clock Multiplication & Division

Stratix device enhanced PLLs provide clock synthesis for PLL output ports using m/(post scaler) scaling factors. The input clock is multiplied by the m feedback factor. Each output port has a unique post scale counter to divide down the high-frequency VCO. There is one multiply divider, m, per fast PLL with a range of 1 to 32. There are two post scale L dividers for regional and/or LVDS interface clocks, and g0 counter for global clock output port; all range from 1 to 32.

In the case of a high-speed differential interface, the designer can set the output counter to 1 to allow the high-speed VCO frequency to drive the SERDES.

External Clock Inputs

Each fast PLL supports single-ended or differential inputs for source synchronous transmitters or for general-purpose use. Source-synchronous receivers support differential clock inputs. The fast PLL inputs are fed by CLK[0..3], CLK[8..11], and FPLL[7..10]CLK pins, as shown in Figure 2–50 on page 2–82.

Table 2–23 shows the I/O standards supported by fast PLL input pins.

Table 2–23. Fast PLL Port I/O Standards (Part 1 of 2)					
I/O Standard	Input				
I/O Standard	INCLK	PLLENABLE			
LVTTL	✓	✓			
LVCMOS	✓	✓			
2.5 V	✓				
1.8 V	✓				
1.5 V	✓				
3.3-V PCI					
3.3-V PCI-X 1.0					
LVPECL	✓				
3.3-V PCML	✓				
LVDS	✓				
HyperTransport technology	✓				
Differential HSTL					
Differential SSTL					
3.3-V GTL	✓				
3.3-V GTL+	✓				
1.5-V HSTL class I	✓				
1.5-V HSTL class II	✓				
1.8-V HSTL class I	✓				
1.8-V HSTL class II	✓				
SSTL-18 class I	✓				
SSTL-18 class II	✓				
SSTL-2 class I	✓				

Table 2–23. Fast PLL Port I/O Standards (Part 2 of 2)				
I/O Ctondord	Input			
I/O Standard	INCLK	PLLENABLE		
SSTL-2 class II	✓			
SSTL-3 class I	✓			
SSTL-3 class II	✓			
AGP (1× and 2×)	✓			
СТТ	~			

Table 2–24 shows the performance on each of the fast PLL clock inputs when using LVDS, LVPECL, 3.3-V PCML, or HyperTransport technology.

Table 2–24. LVDS Performance on Fast PLL Input				
Fast PLL Clock Input Maximum Input Frequency (MHz)				
CLK0, CLK2, CLK9, CLK11, FPLL7CLK, FPLL8CLK, FPLL9CLK, FPLL10CLK	717 <i>(</i> 1)			
CLK1, CLK3, CLK8, CLK10	462			

Note to Table 2-24:

 HyperTransport technology supports 400-MHz input frequency. See "Maximum Input & Output Clock Rates" on page 4–63

External Clock Outputs

Each fast PLL supports differential or single-ended outputs for source-synchronous transmitters or for general-purpose external clocks. There are no dedicated external clock output pins. Any I/O pin can be driven by the fast PLL global or regional outputs as an external output pin. The I/O standards supported by any particular bank determines what standards are possible for an external clock output driven by the fast PLL in that bank.

Phase Shifting

Stratix device fast PLLs have advanced clock shift capability that enables programmable phase shifts. Designers can enter a phase shift (in degrees or time units) for each PLL clock output port or for all outputs together in one shift. Designers can perform phase shifting in time units with a

Stratix Architecture I/O Structure

resolution range of 125 to 416.66 ps. This resolution is a function of the VCO period, with the finest step being equal to an eighth (\times 0.125) of the VCO period.

Control Signals

The fast PLL has the same lock output, pllenable input, and are set input control signals as the enhanced PLL.

If the input clock stops and causes the PLL to lose lock, then the PLL must be reset for correct phase shift operation.

For more information on high-speed differential I/O support, see "High-Speed Differential I/O Support" on page 2–137.

I/O Structure

IOEs provide many features, including:

- Dedicated differential and single-ended I/O buffers
- 3.3-V, 64-bit, 66-MHz PCI compliance
- 3.3-V, 64-bit, 133-MHz PCI-X 1.0 compliance
- Joint Test Action Group (JTAG) boundary-scan test (BST) support
- Driver impedance matching
- On-chip termination for differential and single-ended standards
- Programmable pull-up during configuration
- Output drive strength control
- Slew-rate control
- Tri-state buffers
- Bus-hold circuitry
- Programmable pull-up resistors
- Programmable input and output delays
- Open-drain outputs
- DQ and DQS I/O pins

The IOE in Stratix devices contains a bidirectional I/O buffer, six registers, and a latch for a complete embedded bidirectional single data rate or DDR transfer. Figure 2–59 shows the Stratix IOE structure. The IOE contains two input registers (plus a latch), two output registers, and two output enable registers. The design can use both input registers and the latch to capture DDR input and both output registers to drive DDR outputs. Additionally, the design can use the output enable (OE) register for fast clock-to-output enable timing. The negative edge-clocked OE register is used for DDR SDRAM interfacing. The Quartus II software automatically duplicates a single OE register that controls multiple output or bidirectional pins.

Figure 2–59. Stratix IOE Structure

The IOEs are located in I/O blocks around the periphery of the Stratix device. There are up to four IOEs per row I/O block and six IOEs per column I/O block. The row I/O blocks drive row, column, or direct link interconnects. The column I/O blocks drive column interconnects. Figure 2–60 shows how a row I/O block connects to the logic array. Figure 2–61 shows how a column I/O block connects to the logic array.

Stratix Architecture VO Structure

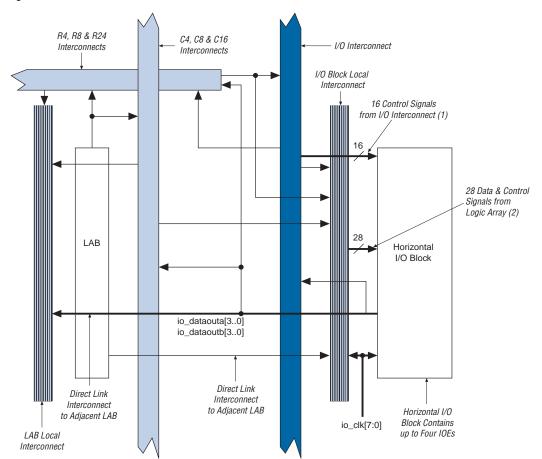


Figure 2-60. Row I/O Block Connection to the Interconnect

Notes to Figure 2–60:

- (1) The 16 control signals are composed of four output enables io_boe[3..0], four clock enables io_boe[3..0], four clocks io_clk[3..0], and four clear signals io_bolr[3..0].
- (2) The 28 data and control signals consist of eight data out lines: four lines each for DDR applications io_dataouta[3..0] and io_dataoutb[3..0], four output enables io_coe[3..0], four input clock enables io_cce_in[3..0], four output clock enables io_cce_out[3..0], four clocks io_cclk[3..0], and four clear signals io_cclr[3..0].

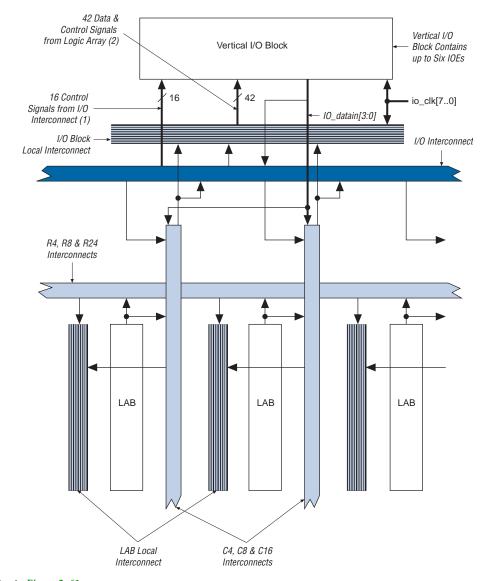
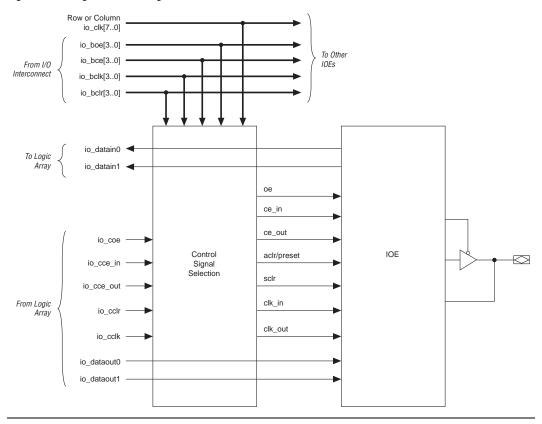


Figure 2-61. Column I/O Block Connection to the Interconnect


Notes to Figure 2-61:

- (1) The 16 control signals are composed of four output enables io_boe[3..0], four clock enables io_boe[3..0], four clocks io_bolk[3..0], and four clear signals io_bolk[3..0].
- (2) The 42 data and control signals consist of 12 data out lines; six lines each for DDR applications io_dataouta[5..0] and io_dataoutb[5..0], six output enables io_coe[5..0], six input clock enables io_cce_in[5..0], six output clock enables io_cce_out[5..0], six clocks io_cclk[5..0], and six clear signals io cclr[5..0].

Stratix Architecture //O Structure

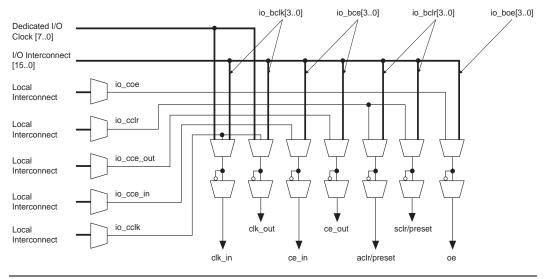

Stratix devices have an I/O interconnect similar to the R4 and C4 interconnect to drive high-fanout signals to and from the I/O blocks. There are 16 signals that drive into the I/O blocks composed of four output enables <code>io_boe[3..0]</code>, four clock enables <code>io_bce[3..0]</code>, four clocks <code>io_bclk[3..0]</code>, and four clear signals <code>io_bclr[3..0]</code>. The pin's <code>datain</code> signals can drive the IO interconnect, which in turn drives the logic array or other I/O blocks. In addition, the control and data signals can be driven from the logic array, providing a slower but more flexible routing resource. The row or column IOE clocks, <code>io_clk[7..0]</code>, provide a dedicated routing resource for low-skew, high-speed clocks. I/O clocks are generated from regional, global, or fast regional clocks (see "PLLs & Clock Networks" on page 2–71). Figure 2–62 illustrates the signal paths through the I/O block.

Figure 2-62. Signal Path through the I/O Block

Each IOE contains its own control signal selection for the following control signals: oe, ce_in, ce_out, aclr/preset, sclr/preset, clk_in, and clk_out. Figure 2–63 illustrates the control signal selection.

Figure 2–63. Control Signal Selection per IOE

In normal bidirectional operation, the input register can be used for input data requiring fast setup times. The input register can have its own clock input and clock enable separate from the OE and output registers. The output register can be used for data requiring fast clock-to-output performance. The OE register can be used for fast clock-to-output enable timing. The OE and output register share the same clock source and the same clock enable source from local interconnect in the associated LAB, dedicated I/O clocks, and the column and row interconnects. Figure 2–64 shows the IOE in bidirectional configuration.

Stratix Architecture //O Structure

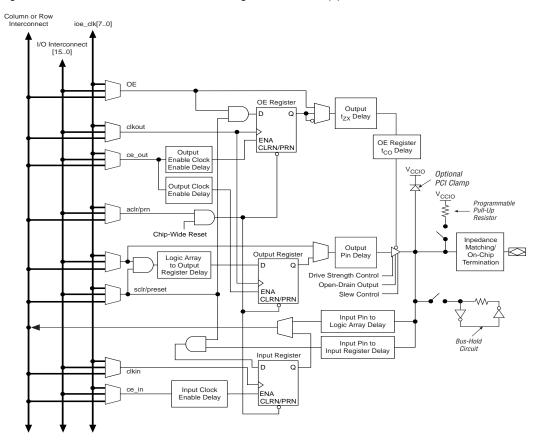


Figure 2–64. Stratix IOE in Bidirectional I/O Configuration Note (1)

Note to Figure 2-64:

(1) All input signals to the IOE can be inverted at the IOE.

The Stratix device IOE includes programmable delays that can be activated to ensure zero hold times, input IOE register-to-logic array register transfers, or logic array-to-output IOE register transfers.

A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay. Programmable delays exist for decreasing input-pin-to-logic-array and IOE input register delays. The Quartus II Compiler can program these delays to automatically minimize setup time while providing a zero hold time. Programmable delays can increase the register-to-pin delays for output

and/or output enable registers. A programmable delay exists to increase the $t_{\rm ZX}$ delay to the output pin, which is required for ZBT interfaces. Table 2–25 shows the programmable delays for Stratix devices.

Table 2–25. Stratix Programmable Delay Chain			
Programmable Delays	Quartus II Logic Option		
Input pin to logic array delay	Decrease input delay to internal cells		
Input pin to input register delay	Decrease input delay to input register		
Output pin delay	Increase delay to output pin		
Output enable register t _{CO} delay	Increase delay to output enable pin		
Output t _{ZX} delay	Increase t _{ZX} delay to output pin		
Output clock enable delay	Increase output clock enable delay		
Input clock enable delay	Increase input clock enable delay		
Logic array to output register delay	Decrease input delay to output register		
Output enable clock enable delay	Increase output enable clock enable delay		

The IOE registers in Stratix devices share the same source for clear or preset. The designer can program preset or clear for each individual IOE. The designer can also program the registers to power up high or low after configuration is complete. If programmed to power up low, an asynchronous clear can control the registers. If programmed to power up high, an asynchronous preset can control the registers. This feature prevents the inadvertent activation of another device's active-low input upon power-up. If one register in an IOE uses a preset or clear signal then all registers in the IOE must use that same signal if they require preset or clear. Additionally a synchronous reset signal is available to the designer for the IOE registers.

Double-Data Rate I/O Pins

Stratix devices have six registers in the IOE, which support DDR interfacing by clocking data on both positive and negative clock edges. The IOEs in Stratix devices support DDR inputs, DDR outputs, and bidirectional DDR modes.

When using the IOE for DDR inputs, the two input registers clock double rate input data on alternating edges. An input latch is also used within the IOE for DDR input acquisition. The latch holds the data that is present during the clock high times. This allows both bits of data to be synchronous with the same clock edge (either rising or falling). Figure 2–65 shows an IOE configured for DDR input.

Stratix Architecture //O Structure

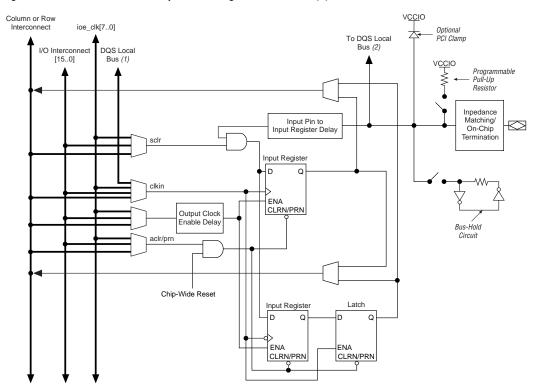


Figure 2–65. Stratix IOE in DDR Input I/O Configuration Note (1)

Notes to Figure 2–65:

- (1) All input signals to the IOE can be inverted at the IOE.
- (2) This signal connection is only allowed on dedicated DQ function pins.
- (3) This signal is for dedicated DQS function pins only.

When using the IOE for DDR outputs, the two output registers are configured to clock two data paths from LEs on rising clock edges. These output registers are multiplexed by the clock to drive the output pin at a $\times 2$ rate. One output register clocks the first bit out on the clock high time, while the other output register clocks the second bit out on the clock low time. Figure 2–66 shows the IOE configured for DDR output.

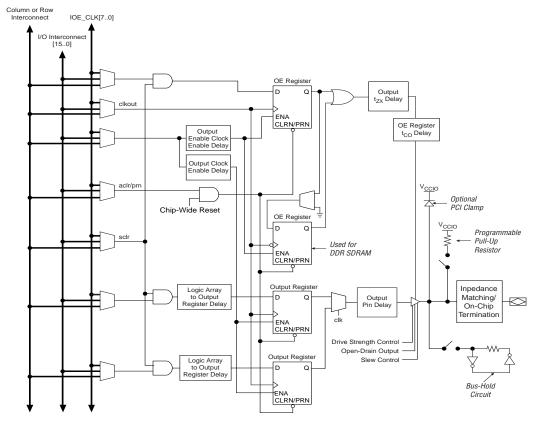


Figure 2–66. Stratix IOE in DDR Output I/O Configuration Note (1)

Note to Figure 2–66:

(1) All input signals to the IOE can be inverted at the IOE.

The Stratix IOE operates in bidirectional DDR mode by combining the DDR input and DDR output configurations. Stratix device I/O pins transfer data on a DDR bidirectional bus to support DDR SDRAM. The negative-edge-clocked OE register holds the OE signal inactive until the falling edge of the clock. This is done to meet DDR SDRAM timing requirements.

External RAM Interfacing

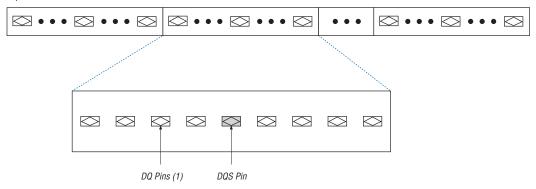
Stratix devices support DDR SDRAM and fast cycle RAM (FCRAM) at up to 200 MHz through dedicated phase-shift circuitry, QDR and QDRII SRAM interfaces up to 167 MHz, and ZBT SRAM interfaces at up to

Stratix Architecture I/O Structure

200 MHz. Stratix devices also provide preliminary support for reduced latency DRAM at rates up to 250 MHz through the dedicated phase-shift circuitry.

In addition to the required signals for external memory interfacing, Stratix devices offer the optional clock enable signal. When the clock enable signal is used, the output register updates with new values. The output registers hold their old values when the clock enable signal is disabled.

To find out more about the DDR SDRAM specification, see the JEDEC web site (www.jedec.org). For information on memory controller megafunctions for Stratix devices, see the Altera web site (www.altera.com).


DDR SDRAM & FCRAM

In addition to six I/O registers in the IOE for interfacing to these high-speed memory interfaces, Stratix devices also have dedicated circuitry for interfacing with DDR SDRAM and FCRAM. In every Stratix device, the I/O banks at the top (I/O banks 3 and 4) and bottom (I/O banks 7 and 8) of the device support DDR SDRAM and FCRAM I/O pins. These pins support DQS signals with DQ bus modes of $\times 8$, $\times 16$, or $\times 32$.

For $\times 8$ mode, there are up to 20 groups of programmable DQS and DQ pins—10 groups in I/O banks 3 and 4 and 10 groups in I/O banks 7 and 8. The EP1S10 device supports up to 16 groups total. See Table 2–26. Each group consists of one DQS pin and a set of eight DQ pins (see Figure 2–67). Each DQS pin drives the set of eight DQ pins within that group.

Figure 2-67. Stratix Device DQ & DQS Groups in ×8 Mode

Top or Bottom I/O Bank

Note to Figure 2-67:

(1) There are at least eight DQ pins per group. Some devices may have more.

For ×16 mode, there are up to eight groups of programmable DQS and DQ pins—four groups in I/O banks 3 and 4, and four groups in I/O banks 7 and 8. The EP1S20 device supports seven ×16 groups. The EP1S10 device does not support ×16 mode. All other devices support the full eight groups. See Table 2–26. Each group consists of one DQS and 16 DQ pins. In ×16 mode, DQST1, DQST3, DQST6, and DQST8 pins on the top side of the device, and DQSB1, DQSB3, DQSB6, and DQSB8 pins on the bottom side of the device are dedicated DQS pins. The DQST2, DQST7, DQSB2, and DQSB7 pins are dedicated DQS pins for ×32 mode. You can use any of the column I/O pins for the DM signals.

If the Stratix device interfaces with a x16 memory device that uses two DQS pins and each DQS pin drives eight DQ pins, the Stratix device must use two sets of x8 groups. Similarly, if the Stratix device interfaces with a x32 memory device that uses four DQS pins and each DQS pin drives eight DQ pins, the Stratix device must use four sets of the x8 groups. The Stratix device's x16 mode means that there is one DQS pin for 16 DQ pins and the Stratix device's x32 mode means that there is only one DQS pin driving all 32 DQ pins...

A compensated delay element on each DQS pin allows for either a 90° (for DDR SDRAM) or a 72° (for FCRAM) phase shift, which automatically aligns input DQS synchronization signals with the data window of their corresponding DQ data signals. The DQS signals drive a local DQS bus within the top and bottom I/O banks. This DQS bus is an additional resource to the I/O clocks and is used to clock DQ input registers with the DQS signal.

Stratix Architecture VO Structure

Table 2–26. DQS & DQ Bus Mode Support Note (1)				
Device	Package	Number of ×8 Groups	Number of ×16 Groups	Number of ×32 Groups
EP1S10	672-pin BGA 672-pin FineLine BGA	12 (2)	0	0
	484-pin FineLine BGA 780-pin FineLine BGA	16 (3)	0	4
EP1S20	484-pin FineLine BGA	18 (4)	7	4
	672-pin BGA 672-pin FineLine BGA	16 (3)	7 (5)	4
	780-pin FineLine BGA	20	7 (5)	4
EP1S25	672-pin BGA 672-pin FineLine BGA	16 (3)	8	4
	780-pin FineLine BGA 1,020-pin FineLine BGA	20	8	4
EP1S30	956-pin BGA 780-pin FineLine BGA 1,020-pin FineLine BGA	20	8	4
EP1S40	956-pin BGA 1,020-pin FineLine BGA 1,508-pin FineLine BGA	20	8	4
EP1S60	956-pin BGA 1,020-pin FineLine BGA 1,508-pin FineLine BGA	20	8	4
EP1S80	956-pin BGA 1,508-pin FineLine BGA 1,923-pin FineLine BGA	20	8	4

Notes to Table 2-26:

- See Chapter 4, Using Selectable I/O Standards in Stratix & Stratix GX Devices of the Stratix Device Handbook, Volume 2 for V_{REF} guidelines.
- (2) These packages have six groups in I/O banks 3 and 4 and six groups in I/O banks 7 and 8.
- (3) These packages have eight groups in I/O banks 3 and 4 and eight groups in I/O banks 7 and 8.
- (4) This package has nine groups in I/O banks 3 and 4 and nine groups in I/O banks 7 and 8.
- (5) These packages have three groups in I/O banks 3 and 4 and four groups in I/O banks 7 and 8.

A single phase shifting reference circuit is located on the top and bottom of the Stratix device. This circuit is driven by a system reference clock through the CLK pins that is the same frequency as the DQS signal. Clock pins CLK12p to CLK15p feed the phase circuitry on the top of the device and clock pins CLK4p to CLK7p feed the phase circuitry on the bottom of

the device. The phase shifting reference circuit on the top of the device controls the compensated delay elements for all ten DQS pins located at the top of the device. The phase shifting reference circuit on the bottom of the device controls the compensated delay elements for all ten DQS pins located on the bottom of the device. All ten delay elements (DQS signals) on either the top or bottom of the device shift by the same degree amount. For example, all ten DQS pins on the top of the device can be shifted by 90° and all ten DQS pins on the bottom of the device can be shifted by 72°. The reference circuit requires a maximum of 256 system reference clock cycles to set the correct phase on the DQS delay elements. Figure 2–68 illustrates the phase shift reference circuit control of each DQS delay shift on the top of the device. This same circuit is duplicated on the bottom of the device.

CLK[15..12] DQS DQS DQS DQS DQS DQS DQS DQS DQS DOS Pin \boxtimes \boxtimes \boxtimes Compensated Delay Element Phase Shift Δ 1 Δt Δ 1 Reference Circuit DQS Bus

Figure 2-68. Phase Shift Reference Circuit Control of DQS Delay

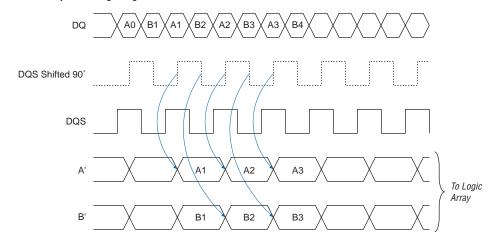
Note to Figure 2-68:

(1) This circuit is repeated on the bottom of the device with the CLK [4..7] pins as possible inputs to the reference

These dedicated circuits combined with enhanced PLL clocking and phase shift ability provide a complete hardware solution for interfacing to high-speed memory.

When reading from the DDR SDRAM or FCRAM, the DQS signal coming into the Stratix device is edge-aligned with the DQ pins. The dedicated circuitry center-aligns the DQS signal with respect to the DQ signals and the shifted DQS bus drives the clock input of the DDR input registers. The DDR input registers bring the data from the DQ signals to the device. The system clock is used to clock the DQS output enable and output paths. The -90° shifted clock is used to clock the DQ output enable and output paths. See Chapter 8, Double Data Rate I/O Signaling in Stratix & Stratix GX Devices

Stratix Architecture //O Structure


of the *Stratix Device Handbook, Volume 2*. To meet 200 MHz performance for DDR SDRAM and FCRAM interfaces the following guidelines should be used:

- The number of DQ pins on each side of an associated DQS pin must be the same
- Resynchronize the incoming data to the logic array clock using successive LE registers or FIFO buffers
- LE registers must be placed in the LAB adjacent to the DQ I/O pin column it is fed by

The Stratix device can use either the rising or falling edge of the system clock to resynchronize the DQ signals. For more information, see the *DDR SDRAM Controller MegaCore Function User Guide*.

The DQS and DQ pins in the Stratix devices output SSTL-2 class II-compliant signals. Stratix devices also can drive differential SSTL-2 class II signals on the output clock pins. Figure 2–69 shows how the data is sampled using the shifted DQS signals.

Figure 2-69. Input Timing Diagram in DDR Mode

Note to Figure 2-69

(1) DQS and DQ signals are both inputs. The DQS signal is externally edge-aligned with the data DQ signal.

When writing to the DDR SDRAM/FCRAM, the DQS signal must be center-aligned with the DQ pins. Two PLL outputs are needed to generate the DQS signal and to clock the DQ pins. The DQS are clocked by the $1\times$ PLL output, while the DQ pins are clocked by the 270° phase-shifted $1\times$ PLL output. Figure 2–70 shows the DQS and DQ output timing diagram.

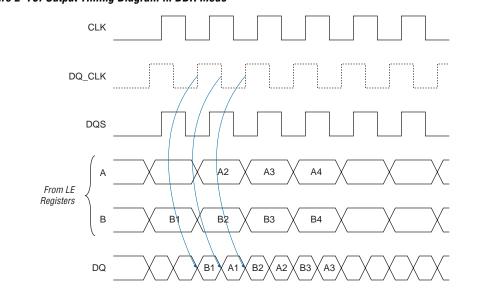
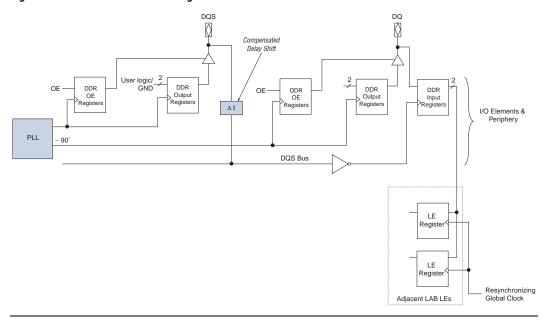



Figure 2-70. Output TIming Diagram in DDR Mode

Figure 2–71 illustrates DDR SDRAM and FCRAM interfacing from the I/O through the dedicated circuitry to the logic array. When the DQS pin acts as an input strobe, the dedicated circuitry shifts the incoming DQS pin by either 90° or 72° and clock the DDR input registers. Due to the DDR input registers architecture in Stratix, the shifted DQS signal must be inverted. The DDR registers output is sent to two LE registers to be synchronized with the system clock. When the DQS pin acts as the output strobe, the 1× clock output from the PLL generates the DQS signal, while the shifted $1\times$ PLL clock output clocks the DQ pins. The resynchronizing global clock in Figure 2–71 is usually the non-phase-shifted clock from the PLL output. If the PLL generating the DQ and DQS clocks uses a clock other than the $1\times$ clock, the PLL output must go off-chip and then back onto the chip for use as the input reference clock.

Stratix Architecture // O Structure

Figure 2-71. DDR SDRAM Interfacing

For more information on DDR signaling, refer to Chapter 8,

Double Data Rate I/O Signaling in Stratix & Stratix GX Devices of the *Stratix Device Handbook, Volume 2*. and the *DDR SDRAM Controller MegaCore Function User Guide*.

Table 2–27 and Figure 2–72 show the DDR read mode timing parameters.

Table 2–27. 200-MHz DDR SDRAM Read AC Timing Specifications				
Symbol	Parameter Min Max U			
t _{DV}	DQ and DQS output valid time	1.5		ns
t _{DQSQ}	DQ to DQS skew		0.4	ns
t _{HSKEW}	Data hold skew factor 0.6		ns	
t _{EXT}	Board skew	-0.3	0.3	ns
t _{SD}	Strobe delay	0.7	1.6	ns

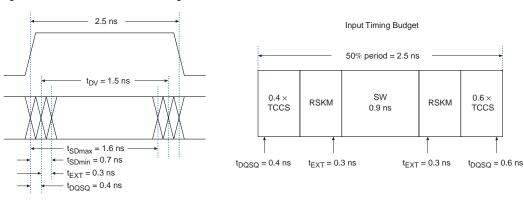


Figure 2-72. DDR Read Mode Timing Parameters

Table 2–28 and Figure 2–73 show the DDR SDRAM write mode timing parameters.

Table 2–28. 200-MHz DDR SDRAM Write AC Timing Specifications					
Symbol	Parameter	Min	Max	Unit	
t _{DQSH}	DQS high input pulse width	1.75		ns	
t _{DQSL}	DQS low input pulse width	1.75		ns	
t _{DIPW}	DQ input pulse width	1.50		ns	
t _{DS}	Data input setup time from DQS	0.40		ns	
t _{DH}	Data input hold time from DQS	0.40		ns	
t _{CKSKEW}	CLK input crossing point voltage	$0.5 \times V_{CCIO} - 0.2$	0.5 × V _{CCIO} + 0.2	V	

Stratix Architecture // US Structure

DQS

tDS tDH

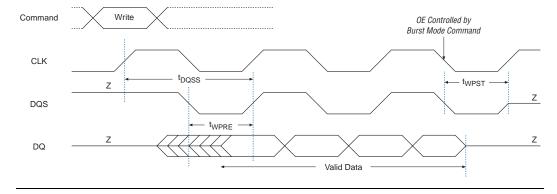

tDS tDH

Figure 2-73. DDR Write Mode Timing Parameters

Table 2–29 and Figure 2–74 show the DDR write mode output enable timing parameters.

Table 2–29. 200-MHz DDR SDRAM Write Mode OE Timing Specifications				
Symbol Parameter Min Max Unit			Unit	
t _{DQSS}	Write to first DQS latching	3.75	6.25	ns
t _{WPRE}	Write preamble 1.25		ns	
t _{WPST}	Write postamble	2.00	3.00	ns

Figure 2-74. DDR Read Mode Timing Parameters

Tables 2–30 through 2–32 and Figure 2–75 show the DDR FCRAM timing specifications.

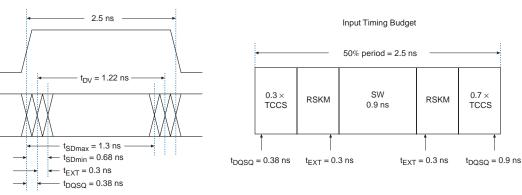

Table 2-30	Table 2–30. 200-MHz DDR FCRAM Read AC Timing Specifications			
Symbol	Parameter	Min	Max	Unit
t _{DV}	DQ and DQS output valid time	1.12		ns
t _{DQSQ}	DQ to DQS skew		0.38	ns
t _{HSKEW}	Data hold skew factor 0.90 ns		ns	
t _{EXT}	Board skew	-0.30	0.30	ns
t _{SD}	Strobe delay	0.68	1.30	ns

Table 2-31	Table 2–31. 200-MHz DDR FCRAM Write AC Timing Specifications			
Symbol	pol Parameter Min Max		Unit	
t _{DSP}	DQS high input pulse width	1.75		ns
t _{DQSL}	DQS low input pulse width	1.75		ns
t _{DIPW}	DQ input pulse width	1.50		ns
t _{DS}	Data input setup time from DQS	0.40		ns
t _{DH}	Data input hold time from DQS	0.40		ns

Table 2–32	Table 2–32. 200-MHz DDR FCRAM Write Mode OE Timing Specifications			
Symbol	Parameter Min Max U			Unit
t _{DQSS}	Write to first DQS latching	3.75	6.25	ns
t _{WPRE}	Write preamble 1.25 n		ns	
t _{WPST}	Write postamble	2.00	3.00	ns

Stratix Architecture I/O Structure

Figure 2–75. DDR FCRAM Timing

RLDRAM I & II

Reduced latency DRAM (RLDRAM) I and II also use DDR signaling to transfer data into and out of the memory.

RLDRAM I uses a pair of DQS pins, one at 180 degree phase shift with respect to the other. Since Stratix devices do not have differential DQS pins, the DQS# signal is ignored. The DQS itself is only used when the Stratix device reads from the RLDRAM I device because the Stratix device uses the RLDRAM clocks for writing to the RLDRAM.

RLDRAM II uses two separate, free-running, unidirectional data strobes (DKx/DKx# and QKx/QKx#) for writing to, and reading from the RLDRAM II device. The QKx strobes should be routed to the DQS pins on the Stratix device. The QKx# strobes should be ignored since Stratix devices do not have differential DQS pins. The Stratix device can generate the DKx/DKx# strobes with the enhanced PLL's differential clock outputs. This implementation will give the strobes the best jitter performance.

RLDRAM I and II use the 1.8-V HSTL I/O standard. Stratix devices support operation up to 200 MHz.

For more information on Stratix device support for RLDRAM I and II, contact Altera Applications.

ODR & ODR II SRAM

QDR SRAM provides independent read and write ports that eliminate bus turnaround. The memory uses two sets of clocks: K and Kn for write access, and C and Cn for read accesses, where Kn and Cn are the inverse

of the K and C clocks, respectively. You can use differential HSTL I/O pins to drive the QDR SRAM clock into the Stratix device. The separate write data and read data ports permit a transfer rate up to four words on every cycle through the DDR circuitry. Stratix devices also offer on-chip termination resistor to implement the required termination scheme for the 1.5-V HSTL I/O standard. Stratix devices support both burst-of-2 and burst-of-4 QDR SRAM architectures, with clock cycles up to 167 MHz using the 1.5-V HSTL class I or class II I/O standard. Figure 2–76 shows the block diagram for QDR SRAM burst-of-2 architecture.

Discrete QDR SRAM Device 18 256K × 18 256K × 18 **BWSn RPSn** Write Read Memory Memory 36 36 Port Port WPSn Array Array C. Cn Data Data D 18 K, Kn Control V_{REF} Logic

Figure 2-76. QDR SRAM Block diagram for Burst-Of-2 Architecture

Stratix devices utilize the DDR I/O circuitry for the input and output data bus and the K and Kn output clock signals. Figure 2–77 shows QDR SRAM interfacing from the I/O pin using the DDR I/O circuitry. Stratix devices also support QDR II SRAM at higher clock speeds since the timing requirements for QDR II SRAM are not as strict as QDR SRAM. Altera offers a QDR SRAM Controller Reference Design that can be modified to interface with multiple QDR SRAM devices.

Stratix Architecture // US Structure

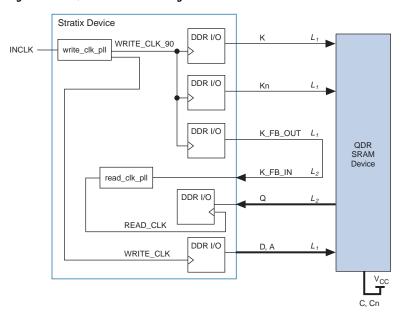


Figure 2-77. QDR SRAM Interfacing

Go to www.qdrsram.com for the QDR SRAM specifications. For more information on QDR SRAM Interfaces in Stratix devices, see Chapter 2, QDR SRAM Controller Reference Design for Stratix & Stratix GX Devices of the *Stratix Device Handbook*, *Volume 2*.

Tables 2–33 and 2–34 and Figure 2–78 show QDR SRAM timing specifications for Stratix devices.

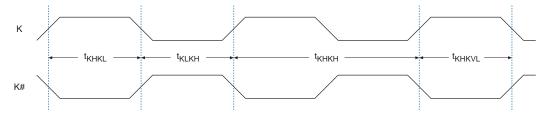

Table 2–33. 1.5-V HSTL Class I & II 166-MHz QDR AC Timing Specifications				
Symbol	Parameter Min Max Unit			
t _{CO}	CLK to valid signal delay	0.8	2.2	ns
t _{SU}	t _{SU} Input setup time to CLK 0.0 ns		ns	
t _{HD}	Input hold time to CLK		0.7	ns

Table 2-34	Table 2–34. 166-MHz QDR Clock Timing Specifications			
Symbol	Parameter Min Max Unit			
t _{KHKH}	Clock cycle time	6.0		ns
t _{KHKL}	Clock high time 2.4 ns		ns	
t _{KLKH}	Clock low time 2.4 ns		ns	
t _{KHK#H} (1)	Clock K/C rising to clock K#/C# rising	2.7	3.3	ns

Note to Table 2-34:

(1) The maximum clock skew between K/C to clock K#/C# is 300 ps.

Figure 2-78. QDR Clock Skew

Zero Bus Turnaround SRAM Interface Support

In addition to DDR SDRAM support, Stratix device I/O pins can also interface with ZBT SRAM devices at up to 200 MHz. ZBT SRAM blocks eliminate dead bus cycles when turning a bidirectional bus around between reads and writes or between writes and reads. ZBT allows for 100% bus utilization because ZBT SRAM can be read or written on every clock cycle. Bus contention can occur when shifting from a write cycle to a read cycle or vice versa with no idle cycles in between. ZBT SRAM allows small amounts of bus contention. Bus contention will not damage Stratix device I/O drivers, but it will increase the power dissipation. To avoid bus contention, the output clock-to-low-impedance time (t_{ZX}) must be greater than the clock-to-high-impedance time (t_{XZ}) . Stratix devices can meet ZBT t_{CO} and t_{SU} timing requirements by controlling phase delay in clocks to the OE/output and input registers using an enhanced PLL. Figure 2–79 shows a flow-through ZBT SRAM operation where the A1 and A3 are read addresses and A2 and A4 are write addresses. For pipelined ZBT SRAM operation, data is delayed by another clock cycle. Stratix devices support up to 200-MHz ZBT SRAM operation using the 2.5-V or 3.3-V LVTTL I/O standard.

I/O Structure **Stratix Architecture**

 $-t_{ZX}$ clock addr Α1 Α2 АЗ A4 $-t_{XZ}$ Q(A1) Q(A3) dataout ZBT Bus Sharing Device t_{ZX} D(A3) datain

Figure 2–79. t_{ZX} & t_{XZ} Timing Diagram

wren

Table 2–35 and Figure 2–80 show the ZBT timing specifications for Stratix devices.

Table 2–35.	Table 2–35. 200-MHz ZBT AC Timing SpecificationsNotes (1), (2)			
Symbol	Parameter	Min	Max	Unit
V _{CCINT}	Logic array supply voltage	1.425	1.575	V
V _{CCIO}	Output supply voltage	3.135/ 2.375	3.465/ 2.625	V
t _{CO}	CLK to signal valid delay	0.5	3.5	ns
t _{SU}	Input setup time to CLK		1.8	ns
t _{CLZ}	CLK to low impedance (3)	2.2	3.5	ns
t _{CHZ}	CLK to high impedance (3)	0.5	1.5	ns
t _{HD}	Input hold time to CLK		1.5	ns
t _A	Operating temperature	0	70	°C

Notes to Table 2–35:

- $\begin{array}{ll} \hbox{(1)} & Load \ for \ ZBT \ t_{CO} \ (C_L = 10 \ pF). \\ \hbox{(2)} & PLL \ jitter, \ PLL \ time \ step \ resolution, \ and \ CLK \ skew \ are \ included. \\ \end{array}$
- (3) V_{CCIO} variation is 3.3 $V/2.5 V \pm 5\%$.

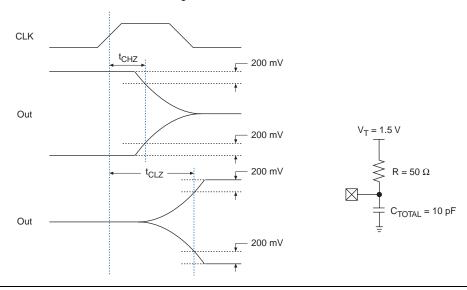


Figure 2-80. ZBT Turn-On & Turn-Off Timing

Programmable Drive Strength

The output buffer for each Stratix device I/O pin has a programmable drive strength control for certain I/O standards. The LVTTL and LVCMOS standard has several levels of drive strength that the user can control. SSTL-3 class I and II, SSTL-2 class I and II, HSTL class I and II, and 3.3-V GTL+ support a minimum setting, the lowest drive strength that guarantees the $\rm I_{OH}/\rm I_{OL}$ of the standard. Using minimum settings provides signal slew rate control to reduce system noise and signal overshoot.

Stratix Architecture I/O Structure

Table 2–36 shows the possible settings for the I/O standards with drive strength control.

Table 2–36. Programmable Drive Strength			
I/O Standard	I _{OH} / I _{OL} Current Strength Setting (mA)		
3.3-V LVTTL	24 (1), 16, 12, 8, 4		
3.3-V LVCMOS	24 (2), 12 (1), 8, 4, 2		
2.5-V LVTTL/LVCMOS	16 (1), 12, 8, 2		
1.8-V LVTTL/LVCMOS	12 (1), 8, 2		
1.5-V LVCMOS	8 (1), 4, 2		

Notes to Table 2-36:

- (1) This is the Quartus II software default current setting.
- (2) I/O banks 1, 2, 5, and 6 do not support this setting.

Open-Drain Output

Stratix devices provide an optional open-drain (equivalent to an open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write-enable signals) that can be asserted by any of several devices.

Slew-Rate Control

The output buffer for each Stratix device I/O pin has a programmable output slew-rate control that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay to rising and falling edges. Each I/O pin has an individual slew-rate control, allowing the designer to specify the slew rate on a pin-by-pin basis. The slew-rate control affects both the rising and falling edges.

Bus Hold

Each Stratix device I/O pin provides an optional bus-hold feature. The bus-hold circuitry can weakly hold the signal on an I/O pin at its last-driven state. Since the bus-hold feature holds the last-driven state of the pin until the next input signal is present, you do not need an external pullup or pull-down resistor to hold a signal level when the bus is tri-stated.

The bus-hold circuitry also pulls undriven pins away from the input threshold voltage where noise can cause unintended high-frequency switching. The designer can select this feature individually for each I/O pin. The bus-hold output will drive no higher than V_{CCIO} to prevent overdriving signals. If the bus-hold feature is enabled, the programmable pull-up option cannot be used. Disable the bus-hold feature when using open-drain outputs with the GTL+ I/O standard or when the I/O pin has been configured for differential signals.

The bus-hold circuitry uses a resistor with a nominal resistance (R_{BH}) of approximately $7\,k\Omega$ to weakly pull the signal level to the last-driven state. Table 4–31 on page 4–15 gives the specific sustaining current driven through this resistor and overdrive current used to identify the next-driven input level. This information is provided for each V_{CCIO} voltage level.

The bus-hold circuitry is active only after configuration. When going into user mode, the bus-hold circuit captures the value on the pin present at the end of configuration.

Programmable Pull-Up Resistor

Each Stratix device I/O pin provides an optional programmable pull-up resistor during user mode. If you enable this feature for an I/O pin, the pull-up resistor (typically 25 k Ω) weakly holds the output to the V_{CCIO} level of the output pin's bank.

Advanced I/O Standard Support

Stratix device IOEs support the following I/O standards:

- LVTTL
- LVCMOS
- 1.5 V
- 1.8 V
- 2.5 V
- 3.3-V PCI
- 3.3-V PCI-X 1.0
- 3.3-V AGP (1× and 2×)
- LVDS
- LVPECL
- 3.3-V PCML
- HyperTransport
- Differential HSTL (on input/output clocks only)
- Differential SSTL (on output column clock pins only)
- GTL/GTL+
- 1.5-V HSTL class I and II

Stratix Architecture // US Structure

- 1.8-V HSTL Class I and II
- SSTL-3 class I and II
- SSTL-2 class I and II
- SSTL-18 class I and II
- CTT

Table 2–37 describes the I/O standards supported by Stratix devices.

Table 2–37. Stratix Supported I/O Standards				
I/O Standard	Туре	Input Reference Voltage (V _{REF}) (V)	Output Supply Voltage (V _{CCIO}) (V)	Board Termination Voltage (V _{TT}) (V)
LVTTL	Single-ended	N/A	3.3	N/A
LVCMOS	Single-ended	N/A	3.3	N/A
2.5 V	Single-ended	N/A	2.5	N/A
1.8 V	Single-ended	N/A	1.8	N/A
1.5 V	Single-ended	N/A	1.5	N/A
3.3-V PCI	Single-ended	N/A	3.3	N/A
3.3-V PCI-X 1.0	Single-ended	N/A	3.3	N/A
LVDS	Differential	N/A	3.3	N/A
LVPECL	Differential	N/A	3.3	N/A
3.3-V PCML	Differential	N/A	3.3	N/A
HyperTransport	Differential	N/A	2.5	N/A
Differential HSTL (1)	Differential	0.75	1.5	0.75
Differential SSTL (2)	Differential	1.25	2.5	1.25
GTL	Voltage-referenced	0.8	N/A	1.20
GTL+	Voltage-referenced	1.0	N/A	1.5
1.5-V HSTL class I and II	Voltage-referenced	0.75	1.5	0.75
1.8-V HSTL class I and II	Voltage-referenced	0.9	1.8	0.9
SSTL-18 class I and II	Voltage-referenced	0.90	1.8	0.90
SSTL-2 class I and II	Voltage-referenced	1.25	2.5	1.25
SSTL-3 class I and II	Voltage-referenced	1.5	3.3	1.5
AGP (1× and 2×)	Voltage-referenced	1.32	3.3	N/A
CTT	Voltage-referenced	1.5	3.3	1.5

Notes to Table 2-37:

- (1) This I/O standard is only available on input and output clock pins.
- (2) This I/O standard is only available on output column clock pins.

For more information on I/O standards supported by Stratix devices, see Chapter 4, Using Selectable I/O Standards in Stratix & Stratix GX Devices of the *Stratix Device Handbook, Volume 2*.

Stratix devices contain eight I/O banks in addition to the four enhanced PLL external clock out banks, as shown in Figure 2–81. The four I/O banks on the right and left of the device contain circuitry to support high-speed differential I/O for LVDS, LVPECL, 3.3-V PCML, and HyperTransport inputs and outputs. These banks support all I/O standards listed in Table 2–37 except PCI I/O pins or PCI-X 1.0, GTL, SSTL-18 Class II, and HSTL Class II outputs. The top and bottom I/O banks support all single-ended I/O standards. Additionally, Stratix devices support four enhanced PLL external clock output banks, allowing clock output capabilities such as differential support for SSTL and HSTL. Table 2–38 shows I/O standard support for each I/O bank.

Stratix Architecture //O Structure

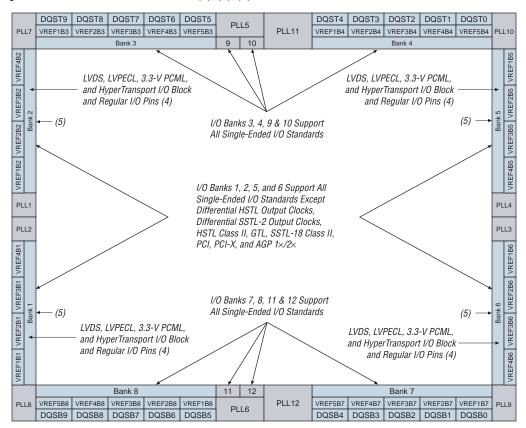


Figure 2–81. Stratix I/O Banks Notes (1), (2), (3)

Notes to Figure 2–81:

- (1) Figure 2–81 is a top view of the silicon die. This will correspond to a top-down view for non-flip-chip packages, but will be a reverse view for flip-chip packages.
- (2) Figure 2–81 is a graphic representation only. Refer to the pin list and the Quartus II software for exact locations.
- (3) Banks 9 through 12 are enhanced PLL external clock output banks.
- (4) If the high-speed differential I/O pins are not used for high-speed differential signaling, they can support all of the I/O standards except HSTL class I and II, GTL, SSTL-18 Class II, PCI, PCI-X 1.0, and AGP 1×/2×.
- (5) You can only place single-ended input pads four or more pads away from a differential pad. You can only place single-ended output/bidirectional pads five or more pads away from a differential pad. Use the Show Pads view in the Quartus II Floorplan Editor to locate these pads. The Quartus II software will give an error message for illegal output or bidirectional pin placement next to a high-speed differential I/O pin.

Table 2–38 shows I/O standard support for each I/O bank.

I/O Standard	Top & Bottom Banks (3, 4, 7 & 8)	Left & Right Banks (1, 2, 5 & 6)	Enhanced PLL External Clock Output Banks (9, 10, 11 & 12)
LVTTL	✓	✓	✓
LVCMOS	✓	✓	✓
2.5 V	✓	✓	✓
1.8 V	✓	✓	✓
1.5 V	✓	✓	✓
3.3-V PCI	✓		✓
3.3-V PCI-X 1.0	✓		✓
LVPECL		✓	
3.3-V PCML		✓	
LVDS		✓	
HyperTransport technology		✓	
Differential HSTL (clock inputs)	✓	✓	
Differential HSTL (clock outputs)			✓
Differential SSTL (clock outputs)			✓
3.3-V GTL	✓	(1)	✓
3.3-V GTL+	✓	✓	✓
1.5-V HSTL class I	✓	✓	✓
1.5-V HSTL class II	✓	(1)	✓
1.8-V HSTL class I	✓	✓	✓
1.8-V HSTL class II	✓	(1)	✓
SSTL-18 class I	✓	✓	✓
SSTL-18 class II	✓	(1)	✓
SSTL-2 class I	✓	✓	✓
SSTL-2 class II	✓	✓	✓
SSTL-3 class I	✓	✓	✓

Stratix Architecture I/O Structure

Table 2–38. I/O Support by Bank (Part 2 of 2)			
I/O Standard	Top & Bottom Banks (3, 4, 7 & 8)	Left & Right Banks (1, 2, 5 & 6)	Enhanced PLL External Clock Output Banks (9, 10, 11 & 12)
SSTL-3 class II	✓	✓	✓
AGP (1× and 2×)	✓	(1)	✓
СТТ	✓	✓	✓

Note to Table 2-38:

(1) These I/O standards are only supported for input pins.

Each I/O bank has its own VCCIO pins. A single device can support 1.5-, 1.8-, 2.5-, and 3.3-V interfaces; each bank can support a different standard independently. Each bank also has dedicated VREF pins to support any one of the voltage-referenced standards (such as SSTL-3) independently.

Each I/O bank can support multiple standards with the same $V_{\rm CCIO}$ for input and output pins. Each bank can support one voltage-referenced I/O standard. For example, when $V_{\rm CCIO}$ is 3.3 V, a bank can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.

Terminator Technology

Terminator technology provides on-chip parallel and differential termination (LVDS I/O Standard) and impedance matching (series termination) to reduce reflections and maintain signal integrity. Terminator technology simplifies board design by minimizing the number of external termination resistors required. These resistors can be placed inside the package, eliminating small stubs that can still lead to reflections. Additionally, the terminator technology provides constant calibration of the internal resistor values after configuration and during normal operation via two external reference resistors. The constant calibration allows the termination resistors to compensate for process, temperature, and voltage variation, providing a robust termination scheme. There is one set of reference resistors for each I/O bank.

Three types of termination are available in the device:

- Series Termination (R_S) and Impedance Matching
- Parallel Termination (R_T)
- Differential Termination (R_D) for LVDS

Stratix devices support series termination for SSTL-3 and SSTL-2 signals to meet SSTL specifications. Stratix devices also support driver impedance matching through series termination for LVTTL and LVCMOS signals to match the impedance of the transmission lines, typically 25 or 50 Ω When used with the output drivers, the terminator technology sets the output driver impedance to 25 or 50 Ω as specified by the external reference resistors, resulting in significantly reduced reflections.

Parallel termination is supported for SSTL-3, SSTL-2, HSTL, GTL, GTL+, and CTT signals as defined by the respective I/O standards. Figure 2–82 illustrates the possible termination schemes for single-ended I/O pins.

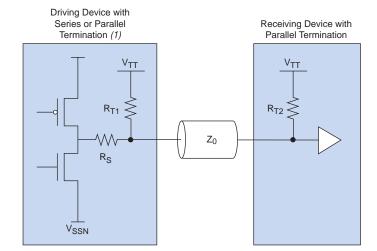


Figure 2-82. Termination Schemes for Single-Ended I/O Pins

Note to Figure 2–82:

(1) In the transmitting device, only one type of termination: series or parallel termination is possible. For standards that require both terminations, such as SSTL 2 Class II, an external parallel termination resistor must be provided.

Stratix devices support differential termination with a $100-\Omega$ resistor for LVDS signals. Figure 2–83 shows the device with differential termination.

Stratix Architecture I/O Structure

Transmitting Device with Differential Termination

Figure 2-83. Differential LVDS Input On-Chip Termination

Terminator technology can only support one type of termination per I/O bank, although some different I/O standards can be mixed within a given I/O bank. I/O banks at the top and bottom of the device support series termination and impedance matching and parallel termination. I/O banks on the left and right side of the device support series termination and impedance matching and LVDS far-end differential termination. Each I/O bank utilizing on-chip termination must connect two external reference resistors, $R_{\rm UP}$ and $R_{\rm DN}$, to the designated pins in the I/O bank. The designer sets which pins are terminated and match the reference resistors. After configuration and during normal operation, the device periodically samples the external resistor values and updates the internal resistor values. Table 2–39 shows the Terminator technology support within each I/O bank.

Table 2–39. Terminator Technology Support by I/O Banks			
Terminator Technology Support	Top & Bottom Banks (3, 4, 7 & 8)	Left & Right Banks (1, 2, 5 & 6)	
Series termination	✓	✓	
Impedance matching (LVTTL/LVCMOS)	✓	√	
Parallel termination (1)	✓		
Differential termination (2), (3)		✓	

Notes to Table 2-39:

- (1) Clock pins CLK[0..3] and CLK[8..11] do not support parallel termination.
- (2) Clock pins CLK0, CLK2, CLK9, CLK11, and pins FPLL[7..10] CLK do not support differential termination.
- (3) Differential termination is only supported for LVDS as it requires 3.3-V VCCIO.

Table 2–40 summarizes the external resistor values required for Terminator technology.

Table 2–40. External Resistor Values				
Parameter	R _{UP}	R _{DN}		
Series termination	250 Ω	250Ω		
Impedance matching (LVTTL/LVCMOS)	250 Ω / 500 Ω	250 Ω / 500 Ω		
Parallel termination (1)	1,000 Ω	1,000 Ω		
Differential termination	(2)	(2)		

Notes to Table 2–40:

- Stratix devices support parallel termination on the top and bottom I/O banks only.
- (2) No external resistor is necessary.

MultiVolt I/O Interface

The Stratix architecture supports the MultiVolt I/O interface feature, which allows Stratix devices in all packages to interface with systems of different supply voltages.

The Stratix VCCINT pins must always be connected to a 1.5-V power supply. With a 1.5-V $V_{\rm CCINT}$ level, input pins are 1.5-V, 1.8-V, 2.5-V, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.5-V, 1.8-V, 2.5-V, or 3.3-V power supply, depending on the output requirements. The output levels are compatible with systems of the same voltage as the power supply (i.e., when VCCIO pins are connected to a 1.5-V power supply, the output levels are compatible with 1.5-V systems). When VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is compatible with 3.3-V or 5.0-V systems.

Table 2-41. Stratix MultiVolt I/O Support *Note (1)* Input Signal **Output Signal** V_{CCIO} (V) 2.5 V 2.5 V 1.5 V 1.8 V 3.3 V 5.0 V 1.5 V 1.8 V 3.3 V 5.0 V 1.5 **√** (2) **√** (2) 1.8 **√** (3) **√** (2) **√** (2) (2)2.5 (3) (3) 3.3 **√** (2) (4) (3)(3) **√** (3)

Table 2–41 summarizes Stratix MultiVolt I/O support.

Notes to Table 2-41:

- To drive inputs higher than V_{CCIO} but less than 4.1 V, disable the PCI clamping diode. However, to drive 5.0-V inputs to the device, enable the PCI clamping diode to prevent V₁ from rising above 4.1 V.
- (2) The pin current may be slightly higher than the default value. Contact Altera Applications for details.
- (3) Although V_{CCIO} specifies the voltage necessary for the Stratix device to drive out, a receiving device powered at a different level can still interface with the Stratix device if it has inputs that tolerate the V_{CCIO} value.
- (4) Stratix devices can be 5.0-V tolerant with the use of an external resistor and the internal PCI clamp diode.

High-Speed Differential I/O Support

Stratix devices contain dedicated circuitry for supporting differential standards at speeds up to 840 Mbps. The following differential I/O standards are supported in the Stratix device: LVDS, LVPECL, HyperTransport, and 3.3-V PCML.

There are four dedicated high-speed PLLs in the EP1S10 to EP1S25 devices and eight dedicated high-speed PLLs in the EP1S30 to EP1S80 devices to multiply reference clocks and drive high-speed differential SERDES channels.

Table 2–42 sshows the number of channels and fast PLLs in EP1S10, EP1S20, and EP1S25 devices. Tables 2–43 through 2–46 show this information for EP1S30, EP1S40, EP1S60, and EP1S80 devices.

Table 2-4	Table 2–42. EP1S10, EP1S20 & EP1S25 Device Differential Channels (Part 1 of 2) Note (1)									
		Transmitter/	Total	Maximum	Center Fast PLLs					
Device	Package	Receiver	Channels	Speed (Mbps)	PLL 1	PLL 2	PLL 3	PLL 4		
EP1S10	484-pin	Transmitter (2)	20	840	5	5	5	5		
	FineLine BGA			462 (3)	10	10	10	10		
		Receiver	20	840	5	5	5	5		
				462 (3)	10	10	10	10		
	672-pin	Transmitter (2)	36	462 (4)	9	9	9	9		
	FineLine BGA			462 (3)	18	18	18	18		
		Receiver	36	462 (4)	9	9	9	9		
				462 (3)	18	18	18	18		
780-pin	Transmitter (2)	44	840	11	11	11	11			
	FineLine BGA			462 (3)	22	22	22	22		
		Receiver	44	840	11	11	11	11		
				462 (3)	22	22	22	22		
EP1S20	484-pin	Transmitter (2)	24	840	6	6	6	6		
	FineLine BGA			462 (3)	12	12	12	12		
		Receiver	20	840	5	5	5	5		
				462 (3)	10	10	10	10		
	672-pin	Transmitter (2)	48	462 (4)	12	12	12	12		
	FineLine BGA			462 (3)	24	24	24	24		
		Receiver	50	462 (4)	13	12	12	13		
				462 (3)	25	25	25	25		
	780-pin	Transmitter (2)	66	840	17	16	16	17		
	FineLine BGA			462 (3)	33	33	33	33		
		Receiver	66	840	17	16	16	17		
				462 (3)	33	33	33	33		

Table 2-4	Table 2–42. EP1S10, EP1S20 & EP1S25 Device Differential Channels (Part 2 of 2) Note (1)									
		Transmitter/	Total	Maximum	Center Fast PLLs					
Device	Package	Receiver	Channels	Speed (Mbps)	PLL 1	PLL 2	PLL 3	PLL 4		
EP1S25	672-pin	Transmitter (2)	56	462 (4)	14	14	14	14		
	FineLine BGA			462 (3)	28	28	28	28		
		Receiver	58	462 (4)	14	15	15	14		
			462 (3)	29	29	29	29			
	780-pin	Transmitter (2)	70	840	18	17	17	18		
	FineLine BGA			462 (3)	35	35	35	35		
		Receiver	66	840	17	16	16	17		
				462 (3)	33	33	33	33		
	1,020-pin	Transmitter (2)	78	840	19	20	20	19		
	FineLine BGA			462 (3)	39	39	39	39		
		Receiver	78	840	19	20	20	19		
				462 (3)	39	39	39	39		

Notes to Table 2–42:

- (1) Table 2–42 shows two different number of channels depending on the channel speed. For example, in the 484-pin FineLine BGA EP1S10 device, PLL 1 can drive a maximum of five channels at 840 Mbps or a maximum of 10 channels at 462 Mbps. The Quartus II software may also merge receiver and transmitter PLLs when a receiver is driving a transmitter. In this case, one fast PLL can drive both the maximum numbers of receiver and transmitter channels.
- (2) The number of channels listed includes the transmitter clock output (tx_outclock) channel. You can use an extra data channel if you need a DDR clock.
- (3) These channels span across two banks per side of the device. When a center fast PLL drives the opposite bank on the same side of the device, the other center fast PLL cannot drive any differential channels on the device. For example, if PLL 1 in a 484-pin FineLine BGA EP1S10 device drives 10 channels at 462 Mbps, PLL 2 cannot drive any differential channels. Similar restrictions apply to PLLs 3 and 4.
- (4) 672-pin packages only support up to 462 Mbps. These values show the channels available for each PLL without crossing another bank.

Table 2–43.	Table 2-43. EP1S30 Differential ChannelsNote (1)											
	Transmitter/	Total	Maximum	C	Center Fast PLLs				Corner Fast PLLs (2), (7)			
Packane	Receiver	Channels	Speed (Mbps)	PLL1	PLL2	PLL3	PLL4	PLL7	PLL8	PLL9	PLL10	
780-pin	Transmitter	70	840	18	17	17	18	(5)	(5)	(5)	(5)	
FineLine BGA	(3)		462 (4)	35	35	35	35	(5)	(5)	(5)	(5)	
Receiver	66	840	17	16	16	17	(5)	(5)	(5)	(5)		
			462 (4)	33	33	33	33	(5)	(5)	(5)	(5)	
956-pin	Transmitter	80 (2) (6)	840	19	20	20	19	20	20	20	20	
FineLine BGA	(3)		462 (4)	39	39	39	39	20	20	20	20	
20/1	Receiver	80 (2) (6)	840	20	20	20	20	19	20	20	19	
			462 (4)	40	40	40	40	19	20	20	19	
1,020-pin	Transmitter	80 (2) (6)	840	20	20	20	20	20	20	20	20	
FineLine BGA	(3)		462 (4)	40	40	40	40	20	20	20	20	
20,1	Receiver	80 (2) (6)	840	20	20	20	20	20	20	20	20	
			462 (4)	40	40	40	40	20	20	20	20	

Table 2–44.	Table 2–44. EP1S40 Differential Channels (Part 1 of 2) Note (1)										
	Transmitter/	Total Channels	Maximum Speed (Mbps)	Center Fast PLLs				Corner Fast PLLs (2), (7)			
Package "	Receiver			PLL1	PLL2	PLL3	PLL4	PLL7	PLL8	PLL9	PLL10
780-pin	Transmitter	68	840	18	16	16	18	(5)	(5)	(5)	(5)
FineLine BGA	(3)		462 (4)	34	34	34	34	(5)	(5)	(5)	(5)
	Receiver	66	840	17	16	16	17	(5)	(5)	(5)	(5)
			462 (4)	33	33	33	33	(5)	(5)	(5)	(5)
956-pin	Transmitter	80	840	18	17	17	18	20	20	20	20
FineLine BGA	(3)		462 (4)	35	35	35	35	20	20	20	20
	Receiver	80	840	20	20	20	20	18	17	17	18
			462 (4)	40	40	40	40	18	17	17	18
1,020-pin	Transmitter	80	840	20	20	20	20	20	20	20	20
FineLine (3)	(3)	(10) (6)	462 (4)	40	40	40	40	20	20	20	20
	Receiver	80 (10)	840	20	20	20	20	20	20	20	20
		(6)	462 (4)	40	40	40	40	20	20	20	20

Table 2-44.	Table 2–44. EP1S40 Differential Channels (Part 2 of 2) Note (1)										
Daalaasa	Dockers Transmitter/		Maximum	Center Fast PLLs Corner Fast PLLs (2), (7							
Package	Receiver	Channels	Speed (Mbps)	PLL1	PLL2	PLL3	PLL4	PLL7	PLL8	PLL9	PLL10
1,508-pin	Transmitter	80	840	20	20	20	20	20	20	20	20
FineLine BGA	(3)	(10) <i>(6)</i>	462 (4)	40	40	40	40	20	20	20	20
2071	Receiver		840	20	20	20	20	20	20	20	20
		(10) (6)	462 (4)	40	40	40	40	20	20	20	20

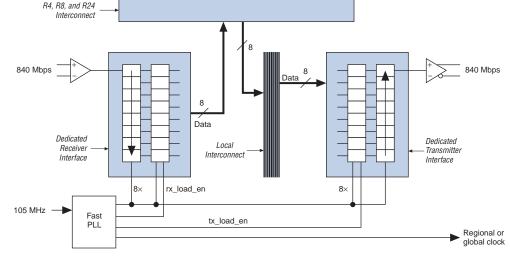
Table 2-45. EP1S60 Differential ChannelsNote (1)											
	Transmitter/		Maximum	Center Fast PLLs				Corner Fast PLLs (2), (7)			
Package	Receiver		Speed (Mbps)	PLL1	PLL2	PLL3	PLL4	PLL7	PLL8	PLL9	PLL10
956-pin	Transmitter	80	840	12	10	10	12	20	20	20	20
FineLine BGA	(3)		462 (4)	40	40	40	40	20	20	20	20
Receiver	80	840	20	20	20	20	12	10	10	12	
			462 (4)	22	22	22	22	12	10	10	12
1,020-pin	Transmitter	80 (12) <i>(6)</i>	840	14	14	14	14	20	20	20	20
FineLine BGA	(3)		462 (4)	28	28	28	28	20	20	20	20
Вол	Receiver	80	840	20	20	20	20	14	13	13	14
		(10) <i>(6)</i>	462 (4)	40	40	40	40	14	13	13	14
1,508-pin	Transmitter	80	840	20	20	20	20	20	20	20	20
FineLine (3)	(36) (6)	462 (4)	40	40	40	40	20	20	20	20	
50/1	Receiver	80	840	20	20	20	20	20	20	20	20
		(36) (6)	462 (4)	40	40	40	40	20	20	20	20

Table 2–46. EP1S80 Differential ChannelsNote (1)											
	Transmitter/	Total Channels	Maximum Speed (Mbps)	Center Fast PLLs				Corner Fast PLLs (2)			
Package	Receiver			PLL1	PLL2	PLL3	PLL4	PLL7	PLL8	PLL9	PLL10
956-pin	Transmitter	80	840	10	10	10	10	20	20	20	20
FineLine BGA	(3)	(40) (6)	462 (4)	20	20	20	20	20	20	20	20
Bort	Receiver	80	840	20	20	20	20	10	10	10	10
			462 (4)	40	40	40	40	10	10	10	10
1,020-pin	Transmitter	92 (12) <i>(6)</i>	840	12	14	14	12	20	20	20	20
FineLine BGA	(3)		462 (4)	26	26	26	26	20	20	20	20
	Receiver	90	840	20	20	20	20	10	10	10	10
		(10) (6)	462 (4)	40	40	40	40	12	13	13	12
1,508-pin	Transmitter	80	840	20	20	20	20	20	20	20	20
FineLine BGA	(3)	(72) (6)	462 (4)	40	40	40	40	28	28	28	28
	Receiver	80	840	20	20	20	20	20	20	20	20
		(56) (6)	462 (4)	40	40	40	40	24	24	24	24

Notes to Tables 2–43 through 2–46

- (1) This table shows two different number of channels depending on the channel speed. For example, in the 780-pin FineLine BGA EP1S30 device, PLL 1 can drive a maximum of 18 channels at 840 Mbps or a maximum of 35 channels at 462 Mbps. The Quartus II software may also merge transmitter and receiver PLLs when a receiver is driving a transmitter. In this case, one fast PLL can drive both the maximum numbers of receiver and transmitter channels.
- (2) Some of the channels accessible by the center fast PLL and the channels accessible by the corner fast PLL overlap. Therefore, the total number of channels is not the addition of the number of channels accessible by PLLs 1, 2, 3, and 4 with the number of channels accessible by PLLs 7, 8, 9, and 10. For more information on which channels overlap, contact Altera Applications.
- (3) The numbers of channels listed include the transmitter clock output (tx_outclock) channel. You can use an extra data channel if you need a DDR clock.
- (4) When a center fast PLL drives the opposite bank on the same side of the device, the other center fast PLL cannot drive any differential channels on the device. For example, if PLL 1 in a 484-pin FineLine BGA EP1S10 device drives 10 channels at 462 Mbps, PLL 2 cannot drive any differential channels. Similar restrictions apply to PLLs 3 and 4
- (5) PLLs 7, 8, 9, and 10 are not available in this device.
- (6) The number in parentheses is the number of slow-speed channels, guaranteed to operate at up to 462 Mbps. These channels are independent of the high-speed differential channels. For the location of these channels, contact Altera Applications.
- (7) The corner fast PLLs in this device support a preliminary data rate of 462 Mbps. Contact Altera Applications for more information.

The high-speed differential I/O circuitry supports the following high speed I/O interconnect standards and applications:


- UTOPIA IV
- SPI-4 Phase 2 (POS-PHY Level 4)
- SF1-4

- 10G Ethernet XSBI
- RapidIO
- HyperTransport

Dedicated Circuitry

Stratix devices support source-synchronous interfacing with LVDS, LVPECL, 3.3-V PCML, or HyperTransport signaling at up to 840 Mbps. Stratix devices can transmit or receive serial channels along with a low-speed or high-speed clock. The receiving device PLL multiplies the clock by a integer factor W (W = 1 through 32). For example, a HyperTransport application where the data rate is 800 Mbps and the clock rate is 400 MHz would require that W be set to 2. The SERDES factor J determines the parallel data width to deserialize from receivers or to serialize for transmitters. The SERDES factor J can be set to 4, 7, 8, or 10 and does not have to equal the PLL clock-multiplication W value. For a J factor of 1, the Stratix device bypasses the SERDES block, and the DDR input and output registers are used in the IOE.

Figure 2–84. High-Speed Differential I/O Receiver / Transmitter Interface Example

An external pin or global or regional clock can drive the fast PLLs, which can output up to three clocks: two multiplied high-speed differential I/O clocks to drive the SERDES block and/or external pin, and a low-speed clock to drive the logic array.

The Quartus II MegaWizard Plug-In Manager only allows you to implement up to 20 receiver or 20 transmitter channels for each fast PLL. These channels operate at up to 840 Mbps. The receiver and transmitter channels are interleaved such that each I/O bank on the left and right side of the device has one receiver channel and one transmitter channel per LAB row. Figure 2–85 shows the fast PLL and channel layout in EP1S10, EP1S20, and EP1S25 devices. Figure 2–86 shows the fast PLL and channel layout in the EP1S30 to EP1S80 devices.

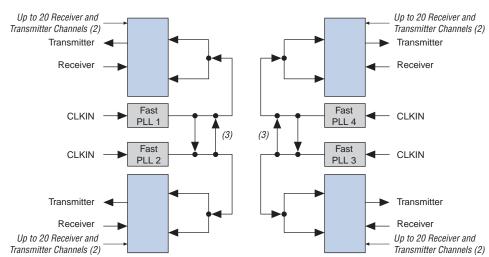


Figure 2–85. Fast PLL & Channel Layout in the EP1S10, EP1S20 or EP1S25 Devices Note (1)

Notes to Figure 2–85:

- (1) Wire-bond packages only support up to 462 Mbps until characterization shows otherwise.
- (2) See Table 2–42 for the number of channels each device supports.
- (3) There is a multiplexer here to select the PLL clock source. If a PLL uses this multiplexer to clock channels outside of its bank quadrant, those clocked channels support up to 462 Mbps. For example, if PLL 2 clocks PLL 1's channel region, then those channels support up to 462 Mbps.

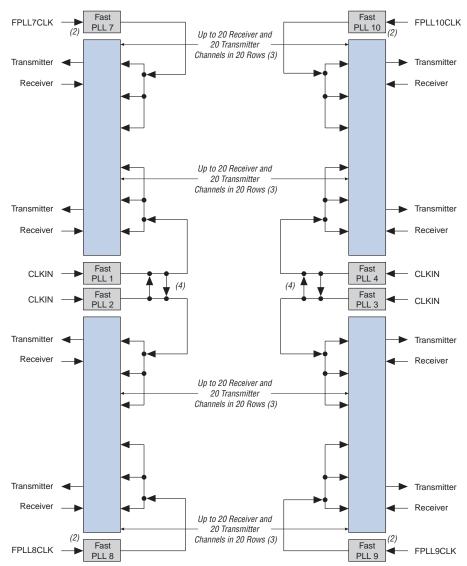


Figure 2–86. Fast PLL & Channel Layout in the EP1S30 to EP1S80 Devices Note (1)

Notes to Figure 2-86:

- (1) Wire-bond packages only support up to 462 Mbps until characterization shows otherwise.
- (2) For EP1S80 devices, the fast PLLs located at the corners of the device support up to 462 Mbps.
- (3) See Tables 2–43 through 2–46 for the number of channels each device supports.
- (4) There is a multiplexer here to select the PLL clock source. If a PLL uses this multiplexer to clock channels outside of its bank quadrant, those clocked channels support up to 462 Mbps. For example, if PLL 2 clocks PLL 1's channel region, then those channels support up to 462 Mbps.

The transmitter external clock output is transmitted on a data channel. The <code>txclk</code> pin for each bank is located in between data transmitter pins. For $\times 1$ clocks (e.g., 622 Mbps, 622 MHz), the high-speed PLL clock bypasses the SERDES to drive the output pins. For half-rate clocks (e.g., 622 Mbps, 311 MHz) or any other even-numbered factor such as 1/4, 1/7, 1/8, or 1/10, the SERDES automatically generates the clock in the Ouartus II software.

For systems that require more than four or eight high-speed differential I/O clock domains, a SERDES bypass implementation is possible using IOEs.

Byte Alignment

For high-speed source synchronous interfaces such as POS-PHY 4, XSBI, RapidIO, and HyperTransport, the source synchronous clock rate is not a byte- or SERDES-rate multiple of the data rate. Byte alignment is necessary for these protocols since the source synchronous clock does not provide a byte or word boundary since the clock is one half the data rate, not one eighth. The Stratix device's high-speed differential I/O circuitry provides dedicated data realignment circuitry for user-controlled byte boundary shifting. This simplifies designs while saving LE resources. An input signal to each fast PLL can stall deserializer parallel data outputs by one bit period. The designer can use an LE-based state machine to signal the shift of receiver byte boundaries until a specified pattern is detected to indicate byte alignment.

Power Sequencing & Hot Socketing

Because Stratix devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. Therefore, the VCCIO and VCCINT power supplies may be powered in any order.

Signals can be driven into Stratix devices before and during power up without damaging the device. In addition, Stratix devices do not drive out during power up. Once operating conditions are reached and the device is configured, Stratix devices operate as specified by the user.

3. Configuration & Testing

\$51003-1.0

Chapter 3, Configuration & Testing, replaces the Stratix Family Data Sheet.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

All Stratix devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1a-1990 specification. JTAG boundary-scan testing can be performed either before or after, but not during configuration. Stratix devices can also use the JTAG port for configuration together with either the Quartus II software or hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc).

Stratix devices support IOE I/O standard setting reconfiguration through the JTAG BST chain. The JTAG chain can update the I/O standard for all input and output pins any time before or during user mode through the CONFIG_IO instruction. Designers can use this ability for JTAG testing before configuration when some of the Stratix pins drive or receive from other devices on the board using voltage-referenced standards. Since the Stratix device may not be configured before JTAG testing, the I/O pins may not be configured for appropriate electrical standards for chip-to-chip communication. Programming those I/O standards via JTAG allows designers to fully test I/O connection to other devices.

The enhanced PLL reconfiguration bits are part of the JTAG chain before configuration and after power-up. After device configuration, the PLL reconfiguration bits are not part of the JTAG chain.

The JTAG pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O standards. The TDO pin voltage is determined by the $V_{\rm CCIO}$ of the bank where it resides. The VCCSEL pin selects whether the JTAG inputs are 1.5-V, 1.8-V, 2.5-V, or 3.3-V compatible.

Stratix devices also use the JTAG port to monitor the logic operation of the device with the SignalTap embedded logic analyzer. Stratix devices support the JTAG instructions shown in Table 3–1.

JTAG Instruction	Instruction Code	Description
SAMPLE/PRELOAD	00 0000 0101	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap embedded logic analyzer.
EXTEST (1)	00 0000 0000	Allows the external circuitry and board-level interconnects to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
BYPASS	11 1111 1111	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation.
USERCODE	00 0000 0111	Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.
IDCODE	00 0000 0110	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.
HIGHZ (1)	00 0000 1011	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation, while tri-stating all of the I/O pins.
CLAMP (1)	00 0000 1010	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation while holding I/O pins to a state defined by the data in the boundary-scan register.
ICR instructions		Used when configuring an Stratix device via the JTAG port with a MasterBlaster™, ByteBlasterMV™, or ByteBlaster™ II download cable, or when using a Jam File or Jam Byte-Code File via an embedded processor or JRunner.
PULSE_NCONFIG	00 0000 0001	Emulates pulsing the nCONFIG pin low to trigger reconfiguration even though the physical pin is unaffected.
CONFIG_IO	00 0000 1101	Allows configuration of I/O standards through the JTAG chain for JTAG testing. Can be executed before, after, or during configuration. Stops configuration if executed during configuration. Once issued, the CONFIG_IO instruction will hold nSTATUS low to reset the configuration device. nSTATUS is held low until the device is reconfigured.
SignalTap instructions		Monitors internal device operation with the SignalTap II embedded logic analyzer.

Note to Table 3–1:

(1) Bus hold and weak pull-up resistor features override the high-impedance state of HIGHZ, CLAMP, and EXTEST.

The Stratix device instruction register length is 10 bits and the USERCODE register length is 32 bits. Tables 3–2 and 3–3 show the boundary-scan register length and device IDCODE information for Stratix devices.

Table 3–2. Stratix Boundary-Scan Register Length						
Device Boundary-Scan Register Length						
EP1S10	1,317					
EP1S20	1,797					
EP1S25	2,157					
EP1S30	2,253					
EP1S40	2,529					
EP1S60	3,129					
EP1S80	3,777					

Table 3-3	Table 3–3. 32-Bit Stratix Device IDCODE								
	IDCODE (32 Bits) (2)								
Device	Version (4 Bits)	Part Number (16 Bits)	Manufacturer Identity (11 Bits)	LSB (1 Bit) (3)					
EP1S10	0000	0010 0000 0000 0001	000 0110 1110	1					
EP1S20	0000	0010 0000 0000 0010	000 0110 1110	1					
EP1S25	0000	0010 0000 0000 0011	000 0110 1110	1					
EP1S30	0000	0010 0000 0000 0100	000 0110 1110	1					
EP1S40	0000	0010 0000 0000 0101	000 0110 1110	1					
EP1S60	0000	0010 0000 0000 0110	000 0110 1110	1					
EP1S80	0000	0010 0000 0000 0111	000 0110 1110	1					

Notes to Tables 3-2 and 3-3:

- (1) Contact Altera Applications for up-to-date information on this device.
- (2) The most significant bit (MSB) is on the left.
- (3) The IDCODE's least significant bit (LSB) is always 1.

Figure 3–1 shows the timing requirements for the JTAG signals.

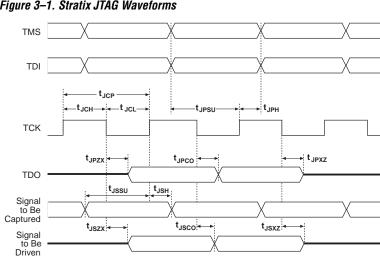


Figure 3-1. Stratix JTAG Waveforms

Table 3–4 shows the JTAG timing parameters and values for Stratix devices.

Table 3-	Table 3–4. Stratix JTAG Timing Parameters & Values								
Symbol	Parameter	Min	Max	Unit					
t _{JCP}	TCK clock period	100		ns					
t _{JCH}	TCK clock high time	50		ns					
t _{JCL}	TCK clock low time	50		ns					
t _{JPSU}	JTAG port setup time	20		ns					
t _{JPH}	JTAG port hold time	45		ns					
t _{JPCO}	JTAG port clock to output		25	ns					
t _{JPZX}	JTAG port high impedance to valid output		25	ns					
t _{JPXZ}	JTAG port valid output to high impedance		25	ns					
t _{JSSU}	Capture register setup time	20		ns					
t _{JSH}	Capture register hold time	45		ns					
t _{JSCO}	Update register clock to output		35	ns					
t _{JSZX}	Update register high impedance to valid output		35	ns					
t _{JSXZ}	Update register valid output to high impedance		35	ns					

For more information on JTAG, see the following documents:

- AN 39: IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices
- Jam Programming & Test Language Specification

SignalTap Embedded Logic Analyzer

Stratix devices feature the SignalTap embedded logic analyzer, which monitors design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry. A designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages, such as FineLine BGA packages, because it can be difficult to add a connection to a pin during the debugging process after a board is designed and manufactured.

Configuration

The logic, circuitry, and interconnects in the Stratix architecture are configured with CMOS SRAM elements. Stratix devices are reconfigurable and are 100% tested prior to shipment. As a result, the designer does not have to generate test vectors for fault coverage purposes, and can instead focus on simulation and design verification. In addition, the designer does not need to manage inventories of different ASIC designs. Stratix devices can be configured on the board for the specific functionality required.

Stratix devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers in-system programmability (ISP)-capable configuration devices that configure Stratix devices via a serial data stream. Stratix devices can be configured in under 100 ms using 8-bit parallel data at 100 MHz. The Stratix device's optimized interface allows microprocessors to configure it serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat Stratix devices as memory and configure them by writing to a virtual memory location, making reconfiguration easy. After a Stratix device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Real-time changes can be made during system operation, enabling innovative reconfigurable computing applications.

Operating Modes

The Stratix architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up,

and before and during configuration. Together, the configuration and initialization processes are called command mode. Normal device operation is called user mode.

SRAM configuration elements allow Stratix devices to be reconfigured incircuit by loading new configuration data into the device. With real-time reconfiguration, the device is forced into command mode with a device pin. The configuration process loads different configuration data, reinitializes the device, and resumes user-mode operation. Designers can perform in-field upgrades by distributing new configuration files either within the system or remotely.

PORSEL is a dedicated input pin used to select POR delay times of 2 ms or 100 ms during power-up. When the PORSEL pin is connected to ground, the POR time is 100 ms; when the PORSEL pin is connected to V_{CC} , the POR time is 2 ms.

The nIO_PULLUP pin enables a built-in weak pull-up resistor to pull all user I/O pins to V_{CCIO} before and during device configuration. If nIO_PULLUP is connected to V_{CC} during configuration, the weak pull-ups on all user I/O pins are disabled. If connected to ground, the pull-ups are enabled during configuration. The nIO_PULLUP pin can be pulled to 1.5, 1.8, 2.5, or 3.3 V for a logic level high.

VCCSEL is a dedicated input that is used to choose whether all dedicated configuration and JTAG input pins can accept 1.5 V/1.8 V or 2.5 V/3.3 V during configuration. A logic low sets 3.3 V/2.5 V, and a logic high sets 1.8 V/1.5 V. VCCSEL affects the following pins: TDI, TMS, TCK, TRST, MSEL0, MSEL1, MSEL2, nCONFIG, nCE, DCLK, PLL_ENA, CONF_DONE, nSTATUS. The VCCSEL pin can be pulled to 1.5, 1.8, 2.5, or 3.3 V for a logic level high.

The V_{CCSEL} signal does not control any of the dual-purpose pins, including the dual-purpose configuration pins. During configuration, the output buffers of dual-purpose pins will drive out a 1.5-V TTL compatible signal while the input buffers will receive 3.3-V TTL. After configuration, the dual-purpose pins inherit the I/O standards specified in the design.

The VCCSEL signal does not control the dual-purpose configuration pins such as the DATA[7..0] and PPA pins (nws, nrs, cs, nrs, and RDYnbsy). During configuration, these dual-purpose pins will drive out voltage levels corresponding to the $V_{\rm CCIO}$ supply voltage that powers the I/O bank containing the pin. After configuration, the dual-purpose pins use I/O standards specified in the user design.

TDO and nCEO drive out at the same voltages as the V_{CCIO} supply that powers the I/O bank containing the pin. Users must select the V_{CCIO} supply for bank containing TDO accordingly. For example, when using the ByteBlasterMV cable, the V_{CCIO} for the bank containing TDO must be powered up at $3.3\ V.$

Configuring Stratix FPGAs with JRunner

JRunner is a software driver that configures Altera FPGAs, including Stratix FPGAs, through the ByteBlaster II or ByteBlasterMV cables in JTAG mode. The programming input file supported is in Raw Binary File (.rbf) format. JRunner also requires a Chain Description File (.cdf) generated by the Quartus II software. JRunner is targeted for embedded JTAG configuration. The source code is developed for the Windows NT operating system (OS), but can be customized to run on other platforms. For more information on the JRunner software driver, see the JRunner Software Driver: An Embedded Solution to the JTAG Configuration White Paper and the source files on the Altera web site (www.altera.com).

Configuration Schemes

Designers can load the configuration data for a Stratix device with one of five configuration schemes (see Table 3–5), chosen on the basis of the target application. Designers can use a configuration device, intelligent controller, or the JTAG port to configure a Stratix device. A configuration device can automatically configure a Stratix device at system power-up.

Multiple Stratix devices can be configured in any of five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device.

Table 3–5. Data Sources for Configuration						
Configuration Scheme	Data Source					
Configuration device	Enhanced or EPC2 configuration device					
Passive serial (PS)	MasterBlaster, ByteBlasterMV, or ByteBlaster II download cable or serial data source					
Passive parallel asynchronous (PPA)	Parallel data source					
Fast passive parallel	Parallel data source					
JTAG	MasterBlaster, ByteBlasterMV, or ByteBlaster II download cable, a microprocessor with a Jam or JBC file, or JRunner					

Partial Reconfiguration

The enhanced PLLs within the Stratix device family support partial reconfiguration of their multiply, divide, and time delay settings without reconfiguring the entire device. Designers can use either serial data from the logic array or regular I/O pins to program the PLL's counter settings in a serial chain. This option provides considerable flexibility for frequency synthesis, allowing real-time variation of the PLL frequency and delay. The rest of the device is functional while reconfiguring the PLL. See "Enhanced PLLs" on page 2–84 for more information on Stratix PLLs.

Remote Update Configuration Modes

Stratix devices also support remote configuration using an Altera enhanced configuration device (e.g., EPC16, EPC8, and EPC4 devices) with page mode selection. Factory configuration data is stored in the default page of the configuration device. This is the default configuration which contains the design required to control remote updates and handle or recover from errors. The designer writes the factory configuration once into the flash memory or configuration device. Remote update data can update any of the remaining pages of the configuration device. If there is an error or corruption in a remote update configuration, the configuration device reverts back to the factory configuration information.

There are two remote configuration modes: remote and local configuration. Designers can use the remote update configuration mode for all three configuration modes: serial, parallel synchronous, and parallel asynchronous. Configuration devices (e.g., EPC16 devices) only support serial and parallel synchronous modes. Asynchronous parallel mode allows remote updates when an intelligent host is used to configure the Stratix device. This host must support page mode settings similar to an EPC16 device.

Remote Update Mode

When the Stratix device is first powered up in remote update programming mode, it loads the configuration located at page address "000." The factory configuration should always be located at page address "000," and should never be remotely updated. The factory configuration contains the required logic to perform the following operations:

- Determine the page address/load location for the next application's configuration data
- Recover from a previous configuration error

 Receive new configuration data and write it into the configuration device

The factory configuration is the default and takes control if an error occurs while loading the application configuration.

While in the factory configuration, the factory-configuration logic performs the following operations:

- Loads a remote update-control register to determine the page address of the new application configuration
- Determines whether to enable a user watchdog timer for the application configuration
- Determines what the watchdog timer setting should be if it is enabled

The user watchdog timer is a counter that must be continually reset within a specific amount of time in the user mode of an application configuration to ensure that valid configuration occurred during a remote update. Only valid application configurations designed for remote update can reset the user watchdog timer in user mode. If a valid application configuration does not reset the user watchdog timer in a specific amount of time, the timer updates a status register and loads the factory configuration. The user watchdog timer is automatically disabled for factory configurations.

If an error occurs in loading the application configuration, the configuration logic writes a status register to specify the cause of the error. Once this occurs, the Stratix device automatically loads the factory configuration, which reads the status register and determines the reason for reconfiguration. Based on the reason, the factory configuration will take appropriate steps and will write the remote update control register to specify the next application configuration page to be loaded.

When the Stratix device successfully loads the application configuration, it enters into user mode. The Stratix device then executes the main application of the user. Intellectual property (IP), such as a Nios® embedded processor, can help the Stratix device determine when remote update is coming. The Nios embedded processor or user logic receives incoming data, writes it to the configuration device, and loads the factory configuration. The factory configuration will read the remote update status register and determine the valid application configuration to load. Figure 3–2 shows the Stratix remote update. Figure 3–3 shows the transition diagram for remote update mode.

Configuration Device (1) Page 7 Application Configuration Watchdog Page 6 Application Configuration Timer New Remote Configuration Data Stratix Device Page 0 Factory Configuration Configuration Device Updates Stratix Device with Factory Configuration (to Handle Update) or New Application Configuration

Figure 3-2. Stratix Device Remote Update

Note to Figure 3-2:

(1) When the Stratix device is configured with the factory configuration, it can handle update data from EPC16, EPC8, or EPC4 configuration device pages and point to the next page in the configuration device.

Application 1 Configuration Power-Up Configuration Error Configuration Error Reload an Application Factory Configuration Reload an Application Configuration Error Application nConfiguration

Figure 3–3. Remote Update Transition Diagram Notes (1), (2)

Notes to Figure 3–3:

- Remote update of Application Configuration is controlled by a Nios embedded processor or user logic programmed in the Factory or Application configurations.
- (2) Up to seven pages can be specified allowing up to seven different configuration applications.

Local Update Mode

Local update mode is a simplified version of the remote update. This feature is intended for simple systems that need to load a single application configuration immediately upon power up without loading the factory configuration first. Local update designs have only one application configuration to load, so it does not require a factory configuration to determine which application configuration to use. Figure 3–4 shows the transition diagram for local update mode.

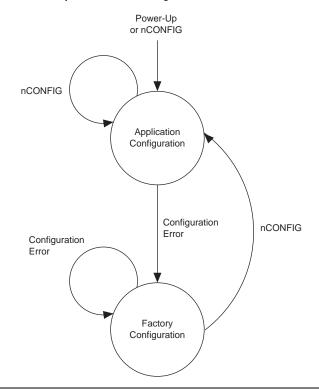


Figure 3-4. Local Update Transition Diagram

Temperature Sensing Diode

Stratix devices include a diode-connected transistor for use as a temperature sensor in power management. This diode is used with an external digital thermometer device such as a MAX1617A or MAX1619 from MAXIM Integrated Products. These devices steer bias current through the Stratix diode, measuring forward voltage and converting this reading to temperature in the form of an 8-bit signed number (7 bits plus sign). The external device's output represents the package temperature of the Stratix device and can be used for intelligent power management.

The diode requires two pins (tempdiodep and tempdioden) on the Stratix device to connect to the external temperature-sensing device, as shown in Figure 3–5. The temperature sensing diode is a passive element and therefore can be used before the Stratix device is powered.

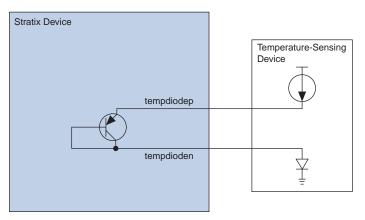


Figure 3-5. External Temperature-Sensing Diode

Table 3–6 shows the specifications for bias voltage and current of the Stratix temperature sensing diode.

Table 3–6. Temperature-Sensing Diode Electrical Characteristics									
Parameter	Minimum	Typical	Maximum	Unit					
I _{BIAS} high	80	100	120	μΑ					
I _{BIAS} low	8	10	12	μΑ					
$V_{BP} - V_{BN}$	0.3		0.9	V					
V _{BN}		0.7		V					
Series resistance			3	W					

The temperature-sensing diode works for the entire operating range shown in Figure 3–6.

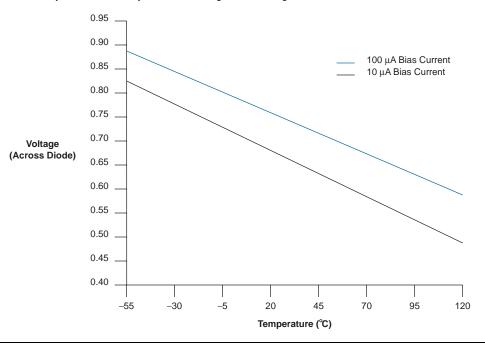


Figure 3-6. Temperature vs. Temperature-Sensing Diode Voltage

4. DC & Switching Characteristics

\$51004-1.1

Chapter 4, DC & Switching Characteristics, replaces the Stratix Family Data Sheet.

Operating Conditions

Stratix devices are offered in both commercial and industrial grades. However, industrial-grade devices may have limited speed-grade availability.

Tables 4–1 through 4–32 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 1.5-V Stratix devices.

Table 4–1	Table 4–1. Stratix Device Absolute Maximum Ratings Notes (1), (2)									
Symbol	Parameter	Conditions	Minimum	Maximum	Unit					
V_{CCINT}	Supply voltage	With respect to ground	-0.5	2.4	V					
V _{CCIO}			-0.5	4.6	V					
VI	DC input voltage (3)		-0.5	4.6	V					
I _{OUT}	DC output current, per pin		-25	40	mA					
T _{STG}	Storage temperature	No bias	-65	150	°C					
T_J	Junction temperature	BGA packages under bias		135	°C					

Table 4–2. Stratix Device Recommended Operating Conditions (Part 1 of 2)								
Symbol	Parameter	Conditions	Minimum	Maximum	Unit			
V _{CCINT}	Supply voltage for internal logic and input buffers	(4)	1.425	1.575	V			
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(4), (5) 3.00 (3.135) 3.0		3.60 (3.465)	V			
	Supply voltage for output buffers, 2.5-V operation	(4)	2.375	2.625	V			
	Supply voltage for output buffers, 1.8-V operation	(4)	1.71	1.89	V			
	Supply voltage for output buffers, 1.5-V operation	(4)	1.4	1.6	V			
V _I	Input voltage	(3), (6)	-0.5	4.1	V			

Table 4–2. Stratix Device Recommended Operating Conditions (Part 2 of 2)								
Symbol	Parameter	Conditions	Minimum	Maximum	Unit			
Vo	Output voltage		0	V _{CCIO}	V			
T _J	Operating junction temperature	For commercial use	0	85	°C			
		For industrial use	-40	100	°C			
t _R	Input rise time			40	ns			
t _F	Input fall time			40	ns			

Table 4–3. Stratix Device DC Operating Conditions Note (7)								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit		
I _I	Input pin leakage current	$V_I = V_{CCIOmax}$ to 0 V (8)	-10		10	μА		
I _{OZ}	Tri-stated I/O pin leakage current	$V_O = V_{CCIOmax}$ to 0 V (8)	-10		10	μА		
I _{CC0}	V _{CC} supply current (standby) (All memory blocks in power-down mode)	V_I = ground, no load, no toggling inputs				mA		
R _{CONF}	Value of I/O pin pull-	V _{CCIO} = 3.0 V (9)	20		50	kΩ		
up resistor before and during configuration	up resistor before and during	V _{CCIO} = 2.375 V (9)	30		80	kΩ		
		V _{CCIO} = 1.71 V (9)	60		150	kΩ		

Table 4–4.	Table 4–4. LVTTL Specifications									
Symbol	Parameter	Conditions	Minimum	Maximum	Unit					
V_{CCIO}	Output supply voltage		3.0	3.6	V					
V _{IH}	High-level input voltage		1.7	4.1	V					
V _{IL}	Low-level input voltage		-0.5	0.7	V					
V _{OH}	High-level output voltage	$I_{OH} = -4 \text{ to } -24 \text{ mA } (10)$	2.4		V					
V _{OL}	Low-level output voltage	I _{OL} = 4 to 24 mA (10)		0.45	V					

Table 4–5. LVCMOS Specifications								
Symbol	Parameter	Conditions	Minimum	Maximum	Unit			
V _{CCIO}	Output supply voltage		3.0	3.6	V			
V _{IH}	High-level input voltage		1.7	4.1	V			
V _{IL}	Low-level input voltage		-0.5	0.7	V			
V _{OH}	High-level output voltage	$V_{CCIO} = 3.0,$ $I_{OH} = -0.1 \text{ mA}$	V _{CCIO} - 0.2		V			
V _{OL}	Low-level output voltage	$V_{CCIO} = 3.0,$ $I_{OL} = 0.1 \text{ mA}$		0.2	V			

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCIO}	Output supply voltage		2.375	2.625	V
V _{IH}	High-level input voltage		1.7	4.1	V
V _{IL}	Low-level input voltage		-0.5	0.7	V
V _{OH}	High-level output voltage	I _{OH} = -0.1 mA	2.1		V
		$I_{OH} = -1 \text{ mA}$	2.0		V
		$I_{OH} = -2 \text{ to } -16 \text{ mA } (10)$	1.7		V
V _{OL}	Low-level output voltage	I _{OL} = 0.1 mA		0.2	V
		I _{OL} = 1 mA		0.4	V
		I _{OL} = 2 to 16 mA (10)		0.7	V

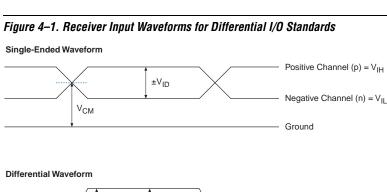
Table 4–7. 1.8-V I/O Specifications								
Symbol	Parameter	Conditions	Minimum	Maximum	Unit			
V _{CCIO}	Output supply voltage		1.65	1.95	V			
V _{IH}	High-level input voltage		$0.65 \times V_{CCIO}$	2.25	V			
V _{IL}	Low-level input voltage		-0.3	$0.35 \times V_{CCIO}$	V			
V _{OH}	High-level output voltage	$I_{OH} = -2 \text{ to } -8 \text{ mA } (10)$	V _{CCIO} - 0.45		V			
V _{OL}	Low-level output voltage	I _{OL} = 2 to 8 mA (10)		0.45	V			

Table 4–8. 1.5-V I/O Specifications								
Symbol	Parameter	Conditions	Minimum	Maximum	Unit			
V _{CCIO}	Output supply voltage		1.4	1.6	V			
V _{IH}	High-level input voltage		$0.65 \times V_{CCIO}$	V _{CCIO} + 0.3	V			
V_{IL}	Low-level input voltage		-0.3	$0.35 \times V_{\text{CCIO}}$	V			
V _{OH}	High-level output voltage	$I_{OH} = -2 \text{ mA } (10)$	$0.75 \times V_{CCIO}$		V			
V _{OL}	Low-level output voltage	I _{OL} = 2 mA (10)		$0.25 \times V_{CCIO}$	V			

Notes to Tables 4–1 through 4–8:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Conditions beyond those listed in Table 4–1 may cause permanent damage to a device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse affects on the device.
- (3) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2 V or overshoot to 4.6 V for input currents less than 100 mA and periods shorter than 20 ns.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) V_{CCIO} maximum and minimum conditions for LVPECL, LVDS, and 3.3-V PCML are shown in parentheses.
- (6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (7) Typical values are for $T_A = 25^{\circ}\text{C}$, $V_{CCINT} = 1.5 \text{ V}$, and $V_{CCIO} = 1.5 \text{ V}$, 1.8 V, 2.5 V, and 3.3 V.
- (8) This value is specified for normal device operation. The value may vary during power-up. This applies for all V_{CCIO} settings (3.3, 2.5, 1.8, and 1.5 V)
- (9) Pin pull-up resistance values will lower if an external source drives the pin higher than V_{CCIO}.
- (10) Drive strength is programmable according to values in Table 2–36 on page 2–127.

Figures 4–1 and 4–2 show receiver input and transmitter output waveforms, respectively, for all differential I/O standards (LVDS, 3.3-V PCML, LVPECL, and HyperTransport technology).



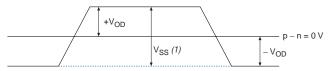


Figure 4–2. Transmitter Output Waveforms for Differential I/O Standards

Single-Ended Waveform

Differential Waveform

Note to Figure 4–2: (1) V_{SS} : steady-state differential output voltage.

Table 4–9. 3.3-V LVDS I/O Specifications (Part 1 of 2)								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit		
V _{CCIO}	I/O supply voltage		3.135	3.3	3.465	V		
V _{ID}	Input differential voltage swing	$0.1 \text{ V} < \text{V}_{\text{CM}} < 1.1 \text{ V}$ J = 1 through 10	300		1,000	mV		
		1.1 V \leq V _{CM} \leq 1.6 V J = 1	200		1,000	mV		
		1.1 V \leq V _{CM} \leq 1.6 V J = 2 through 10	100		1,000	mV		
		1.6 V < V_{CM} < 1.8 V J = 1 through 10	300		1,000	mV		

Table 4–9.	3.3-V LVDS I/O Specification	ns (Part 2 of 2)				
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{ICM}	Input common mode voltage	LVDS $0.3 \text{ V} < \text{V}_{\text{ID}} < 1.0 \text{ V}$ J = 1 through 10	100		1,100	mV
		LVDS 0.3 V < V _{ID} < 1.0 V <i>J</i> = 1 through 10	1,600		1,800	mV
		LVDS 0.2 V < V _{ID} < 1.0 V <i>J</i> = 1	1,100		1,600	mV
		LVDS 0.1 V < V _{ID} < 1.0 V <i>J</i> = 2 through 10	1,100		1,600	mV
V _{OD} (1)	Output differential voltage	$R_L = 100 \Omega$	250	375	550	mV
Δ V _{OD}	Change in V _{OD} between high and low	R _L = 100 Ω			50	mV
V _{OCM}	Output common mode voltage	R _L = 100 Ω	1,125	1,200	1,375	mV
Δ V _{OCM}	Change in V _{OCM} between high and low	R _L = 100 Ω			50	mV
R _L	Receiver differential input resistor		90	100	110	Ω

Table 4-10	Table 4–10. 3.3-V PCML Specifications								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit			
V _{CCIO}	I/O supply voltage		3.135	3.3	3.465	V			
V _{ID}	Input differential voltage swing		300		600	mV			
V _{ICM}	Input common mode voltage		1.5		3.465	V			
V _{OD}	Output differential voltage		300	370	500	mV			
ΔV_{OD}	Change in V _{OD} between high and low				50	mV			
V _{OCM}	Output common mode voltage		2.5	2.85	3.3	V			
Δ V _{OCM}	Change in V _{OCM} between high and low				50	mV			
V _T	Output termination voltage			V _{CCIO}		V			
R ₁	Output external pull-up resistors		45	50	55	Ω			
R ₂	Output external pull-up resistors		45	50	55	Ω			

Table 4–11. LVPECL Specifications							
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit	
V _{CCIO}	I/O supply voltage		3.135	3.3	3.465	V	
V _{ID}	Input differential voltage swing		300		1,000	mV	
V _{ICM}	Input common mode voltage		1		2	V	
V _{OD}	Output differential voltage	$R_L = 100 \Omega$	525	700	970	mV	
V _{OCM}	Output common mode voltage	R _L = 100 Ω	1.5	1.7	1.9	V	
R _L	Receiver differential input resistor		90	100	110	Ω	

Table 4–12	Table 4–12. HyperTransport Technology Specifications								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit			
V _{CCIO}	I/O supply voltage		2.375	2.5	2.625	V			
V _{ID}	Input differential voltage swing		300		900	mV			
V _{ICM}	Input common mode voltage		300		900	mV			
V _{OD}	Output differential voltage	$R_L = 100 \Omega$	380	485	820	mV			
ΔV _{OD}	Change in V _{OD} between high and low	R _L = 100 Ω			50	mV			
V _{OCM}	Output common mode voltage	R _L = 100 Ω	440	650	780	mV			
Δ V _{OCM}	Change in V _{OCM} between high and low	R _L = 100 Ω			50	mV			
R _L	Receiver differential input resistor		90	100	110	Ω			

Table 4–13. 3.3-V PCI Specifications								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit		
V _{CCIO}	Output supply voltage		3.0	3.3	3.6	V		
V _{IH}	High-level input voltage		0.5 × V _{CCIO}		V _{CCIO} + 0.5	V		
V _{IL}	Low-level input voltage		-0.5		0.3 × V _{CCIO}	V		
V _{OH}	High-level output voltage	$I_{OUT} = -500 \mu A$	0.9 × V _{CCIO}			V		
V _{OL}	Low-level output voltage	I _{OUT} = 1,500 μA			0.1 × V _{CCIO}	V		

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{CCIO}	Output supply voltage		3.0	.,,	3.6	V
V _{IH}	High-level input voltage		0.5 × V _{CCIO}		V _{CCIO} + 0.5	V
V _{IL}	Low-level input voltage		-0.5		0.35 × V _{CCIO}	V
V _{IPU}	Input pull-up voltage		0.7 × V _{CCIO}			V
V _{OH}	High-level output voltage	$I_{OUT} = -500 \mu A$	0.9 × V _{CCIO}			V
V _{OL}	Low-level output voltage	I _{OUT} = 1,500 μA			0.1 × V _{CCIO}	V

Table 4–15. GTL+ I/O Specifications								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit		
V_{TT}	Termination voltage		1.35	1.5	1.65	V		
V _{REF}	Reference voltage		0.88	1.0	1.12	V		
V _{IH}	High-level input voltage		V _{REF} + 0.1			V		
V _{IL}	Low-level input voltage				V _{REF} - 0.1	V		
V _{OL}	Low-level output voltage	I _{OL} = 34 mA (3)			0.65	V		

Table 4–16. GTL I/O Specifications								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit		
V_{TT}	Termination voltage		1.14	1.2	1.26	V		
V_{REF}	Reference voltage		0.74	0.8	0.86	V		
V _{IH}	High-level input voltage		V _{REF} + 0.05			V		
V _{IL}	Low-level input voltage				V _{REF} – 0.05	V		
V _{OL}	Low-level output voltage	I _{OL} = 40 mA (3)			0.4	V		

Table 4–17. SSTL-18 Class I Specifications									
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit			
V _{CCIO}	Output supply voltage		1.65	1.8	1.95	V			
V_{REF}	Reference voltage		0.8	0.9	1.0	V			
V _{TT}	Termination voltage		V _{REF} – 0.04	V_{REF}	V _{REF} + 0.04	V			
V _{IH(DC)}	High-level DC input voltage		V _{REF} + 0.125			V			
$V_{IL(DC)}$	Low-level DC input voltage				V _{REF} – 0.125	V			
V _{IH(AC)}	High-level AC input voltage		V _{REF} + 0.275			V			
V _{IL(AC)}	Low-level AC input voltage				V _{REF} – 0.275	V			
V _{OH}	High-level output voltage	$I_{OH} = -6.7 \text{ mA}$ (3)	V _{TT} + 0.475			V			
V _{OL}	Low-level output voltage	$I_{OL} = 6.7 \text{ mA } (3)$			V _{TT} – 0.475	V			

Table 4–18. SSTL-18 Class II Specifications									
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit			
V_{CCIO}	Output supply voltage		1.65	1.8	1.95	V			
V_{REF}	Reference voltage		0.8	0.9	1.0	V			
V _{TT}	Termination voltage		V _{REF} – 0.04	V_{REF}	V _{REF} + 0.04	V			
V _{IH(DC)}	High-level DC input voltage		V _{REF} + 0.125			V			
V _{IL(DC)}	Low-level DC input voltage				V _{REF} – 0.125	V			
V _{IH(AC)}	High-level AC input voltage		V _{REF} + 0.275			V			
V _{IL(AC)}	Low-level AC input voltage				V _{REF} – 0.275	V			
V _{OH}	High-level output voltage	$I_{OH} = -13.4 \text{ mA}$ (3)	V _{TT} + 0.630			V			
V _{OL}	Low-level output voltage	I _{OL} = 13.4 mA (3)			V _{TT} – 0.630	V			

Table 4–19. SSTL-2 Class I Specifications								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit		
V _{CCIO}	Output supply voltage		2.375	2.5	2.625	V		
V _{TT}	Termination voltage		V _{REF} – 0.04	V_{REF}	V _{REF} + 0.04	V		
V _{REF}	Reference voltage		1.15	1.25	1.35	V		
V _{IH}	High-level input voltage		V _{REF} + 0.18		3.0	V		
V _{IL}	Low-level input voltage		-0.3		V _{REF} – 0.18	V		
V _{OH}	High-level output voltage	$I_{OH} = -8.1 \text{ mA}$ (3)	V _{TT} + 0.57			V		
V _{OL}	Low-level output voltage	I _{OL} = 8.1 mA (3)			V _{TT} – 0.57	V		

Table 4–20. SSTL-2 Class II Specifications								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit		
V _{CCIO}	Output supply voltage		2.3	2.5	2.7	V		
V _{TT}	Termination voltage		V _{REF} - 0.04	V_{REF}	V _{REF} + 0.04	V		
V _{REF}	Reference voltage		1.15	1.25	1.35	V		
V _{IH}	High-level input voltage		V _{REF} + 0.18		V _{CCIO} + 0.3	V		
V _{IL}	Low-level input voltage		-0.3		V _{REF} – 0.18	V		
V _{OH}	High-level output voltage	$I_{OH} = -16.4 \text{ mA}$ (3)	V _{TT} + 0.76			V		
V _{OL}	Low-level output voltage	I _{OL} = 16.4 mA (3)			V _{TT} – 0.76	V		

Table 4–21. SSTL-3 Class I Specifications								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit		
V _{CCIO}	Output supply voltage		3.0	3.3	3.6	V		
V _{TT}	Termination voltage		V _{REF} - 0.05	V_{REF}	V _{REF} + 0.05	V		
V_{REF}	Reference voltage		1.3	1.5	1.7	V		
V _{IH}	High-level input voltage		V _{REF} + 0.2		V _{CCIO} + 0.3	V		
V _{IL}	Low-level input voltage		-0.3		V _{REF} – 0.2	V		
V _{OH}	High-level output voltage	$I_{OH} = -8 \text{ mA } (3)$	V _{TT} + 0.6			V		
V _{OL}	Low-level output voltage	I _{OL} = 8 mA (3)			V _{TT} – 0.6	V		

Table 4–22. SSTL-3 Class II Specifications							
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit	
V _{CCIO}	Output supply voltage		3.0	3.3	3.6	V	
V _{TT}	Termination voltage		V _{REF} - 0.05	V_{REF}	V _{REF} + 0.05	V	
V _{REF}	Reference voltage		1.3	1.5	1.7	V	
V _{IH}	High-level input voltage		V _{REF} + 0.2		V _{CCIO} + 0.3	V	
V _{IL}	Low-level input voltage		-0.3		V _{REF} - 0.2	V	
V _{OH}	High-level output voltage	$I_{OH} = -16 \text{ mA } (3)$	V _{TT} + 0.8			V	
V _{OL}	Low-level output voltage	I _{OL} = 16 mA (3)			V _{TT} – 0.8	V	

Table 4–23. 3.3-V AGP 2× Specifications							
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit	
V _{CCIO}	Output supply voltage		3.15	3.3	3.45	V	
V_{REF}	Reference voltage		$0.39 \times V_{CCIO}$		$0.41 \times V_{CCIO}$	V	
V _{IH}	High-level input voltage (4)		$0.5 \times V_{CCIO}$		V _{CCIO} + 0.5	V	
V _{IL}	Low-level input voltage (4)				$0.3 \times V_{CCIO}$	V	
V _{OH}	High-level output voltage	$I_{OUT} = -0.5 \text{ mA}$	0.9 × V _{CCIO}		3.6	V	
V _{OL}	Low-level output voltage	I _{OUT} = 1.5 mA			0.1 × V _{CCIO}	V	

Table 4–24. 3.3-V AGP 1× Specifications							
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit	
V_{CCIO}	Output supply voltage		3.15	3.3	3.45	V	
V _{IH}	High-level input voltage (4)		$0.5 \times V_{CCIO}$		V _{CCIO} + 0.5	V	
V _{IL}	Low-level input voltage (4)				$0.3 \times V_{CCIO}$	V	
V _{OH}	High-level output voltage	$I_{OUT} = -0.5 \text{ mA}$	$0.9 \times V_{CCIO}$		3.6	V	
V _{OL}	Low-level output voltage	I _{OUT} = 1.5 mA			0.1 × V _{CCIO}	V	

Table 4–25. 1.5-V HSTL Class I Specifications (Part 1 of 2)							
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit	
V _{CCIO}	Output supply voltage		1.4	1.5	1.6	V	
V_{REF}	Input reference voltage		0.68	0.75	0.9	V	
V _{TT}	Termination voltage		0.7	0.75	0.8	V	

Table 4–25. 1.5-V HSTL Class I Specifications (Part 2 of 2)								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit		
V _{IH} (DC)	DC high-level input voltage		V _{REF} + 0.1			V		
V _{IL} (DC)	DC low-level input voltage		-0.3		V _{REF} – 0.1	V		
V _{IH} (AC)	AC high-level input voltage		V _{REF} + 0.2			V		
V _{IL} (AC)	AC low-level input voltage				V _{REF} - 0.2	V		
V _{OH}	High-level output voltage	I _{OH} = 8 mA <i>(3)</i>	V _{CCIO} - 0.4			V		
V _{OL}	Low-level output voltage	$I_{OH} = -8 \text{ mA } (3)$			0.4	V		

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{CCIO}	Output supply voltage		1.4	1.5	1.6	V
V_{REF}	Input reference voltage		0.68	0.75	0.9	V
V _{TT}	Termination voltage		0.7	0.75	0.8	V
V _{IH} (DC)	DC high-level input voltage		V _{REF} + 0.1			V
V _{IL} (DC)	DC low-level input voltage		-0.3		V _{REF} - 0.1	V
V _{IH} (AC)	AC high-level input voltage		V _{REF} + 0.2			V
V _{IL} (AC)	AC low-level input voltage				V _{REF} - 0.2	V
V _{OH}	High-level output voltage	I _{OH} = 16 mA <i>(3)</i>	V _{CCIO} - 0.4			V
V _{OL}	Low-level output voltage	$I_{OH} = -16 \text{ mA } (3)$			0.4	V

Table 4–27	Table 4–27. 1.8-V HSTL Class I Specifications									
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit				
V _{CCIO}	Output supply voltage		1.65	1.80	1.95	V				
V _{REF}	Input reference voltage		0.70	0.90	0.95	V				
V _{TT}	Termination voltage			V _{CCIO} × 0.5		V				
V _{IH} (DC)	DC high-level input voltage		V _{REF} + 0.1			V				
V _{IL} (DC)	DC low-level input voltage		-0.5		V _{REF} - 0.1	V				
V _{IH} (AC)	AC high-level input voltage		V _{REF} + 0.2			V				
V _{IL} (AC)	AC low-level input voltage				V _{REF} - 0.2	V				
V _{OH}	High-level output voltage	I _{OH} = 8 mA (3)	V _{CCIO} - 0.4			V				
V _{OL}	Low-level output voltage	$I_{OH} = -8 \text{ mA } (3)$			0.4	V				

Table 4-28	Table 4–28. 1.8-V HSTL Class II Specifications										
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit					
V _{CCIO}	Output supply voltage		1.65	1.80	1.95	V					
V_{REF}	Input reference voltage		0.70	0.90	0.95	V					
V _{TT}	Termination voltage			V _{CCIO} × 0.5		V					
V _{IH} (DC)	DC high-level input voltage		V _{REF} + 0.1			V					
V _{IL} (DC)	DC low-level input voltage		-0.5		V _{REF} - 0.1	V					
V _{IH} (AC)	AC high-level input voltage		V _{REF} + 0.2			V					
V _{IL} (AC)	AC low-level input voltage				V _{REF} - 0.2	V					
V _{OH}	High-level output voltage	I _{OH} = 16 mA <i>(3)</i>	V _{CCIO} - 0.4			V					
V _{OL}	Low-level output voltage	$I_{OH} = -16 \text{ mA } (3)$			0.4	V					

Table 4–29. 1.5-V Differential HSTL Specifications									
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit			
V _{CCIO}	I/O supply voltage		1.4	1.5	1.6	V			
V _{DIF} (DC)	DC input differential voltage		0.2			V			
V _{CM} (DC)	DC common mode input voltage		0.68		0.9	V			
V _{DIF} (AC)	AC differential input voltage		0.4			V			

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{CCIO}	Output supply voltage		3.0	3.3	3.6	V
V _{TT} /V _{REF}	Termination and input reference voltage		1.35	1.5	1.65	V
V _{IH}	High-level input voltage		V _{REF} + 0.2			V
V _{IL}	Low-level input voltage				V _{REF} - 0.2	V
V _{OH}	High-level output voltage	$I_{OH} = -8 \text{ mA}$	V _{REF} + 0.4			V
V _{OL}	Low-level output voltage	I _{OL} = 8 mA			V _{REF} - 0.4	V
Io	Output leakage current (when output is high Z)	GND ở V _{OUT} ở V _{CCIO}	-10		10	μА

Table 4–31. Bu	Table 4–31. Bus Hold Parameters									
		V _{CCIO} Level								
Parameter	Conditions	1.5 V		1.8 V		2.5 V		3.3 V		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
Low sustaining current	$V_{IN} > V_{IL}$ (maximum)			30		50		70		μА
High sustaining current	V _{IN} < V _{IH} (minimum)			-30		-50		-70		μА
Low overdrive current	0 V < V _{IN} < V _{CCIO}				200		300		500	μА
High overdrive current	0 V < V _{IN} < V _{CCIO}				-200		-300		-500	μА

Table 4–32. Stratix Device Capacitance Note (5)									
Symbol	Parameter	Minimum	Typical	Maximum	Unit				
C _{IOTB}	Input capacitance on I/O pins in I/O banks 3, 4, 7, and 8.		11.5		pF				
C _{IOLR}	Input capacitance on I/O pins in I/O banks 1, 2, 5, and 6, including high-speed differential receiver and transmitter pins.		8.2		pF				
C _{CLKTB}	Input capacitance on top/bottom clock input pins: CLK[4:7] and CLK[12:15].		11.5		pF				
C _{CLKLR}	Input capacitance on left/right clock inputs: CLK1, CLK3, CLK8, CLK10.		7.8		pF				
C _{CLKLR+}	Input capacitance on left/right clock inputs: CLKO, CLK2, CLK9, and CLK11.		4.4		pF				

Notes to Tables 4–9 through 4–32:

- (1) When tx_outclock port of altlvds_tx megafunction is 717 MHz, $V_{\rm OD(min)}$ = 235 mV on the output clock pin.
- (2) Pin pull-up resistance values will lower if an external source drives the pin higher than V_{CCIO}.
- (3) Drive strength is programmable according to values in Table 2–36 on page 2–127.
- (4) V_{REF} specifies the center point of the switching range.
- (5) Capacitance is sample-tested only. Capacitance is measured using time-domain reflections (TDR). Measurement accuracy is within ± 0.5 pF.

Power Consumption

Altera offers two ways to calculate power for a design: the Altera web power calculator and the PowerGauge $^{\text{TM}}$ feature in the Quartus II software.

The interactive power calculator on the Altera web site is typically used prior to designing the FPGA in order to get a magnitude estimate of the device power. The Quartus II software PowerGauge feature allows designers to apply test vectors against their design for more accurate power consumption modeling.

In both cases, these calculations should only be used as an estimation of power, not as a specification.

Stratix devices require a certain amount of power-up current to successfully power up because of the small process geometry on which they are fabricated.

Table 4–33 shows the maximum power-up current (I_{CCINT}) required to power a Stratix device. This specification is for commercial operating conditions. Measurments were performed with an isolated Stratix device on the board to characterize the power-up current of an isolated device. Decoupling capacitors were not used in this measurement. To factor in the current for decoupling capacitors, sum up the current for each capacitor using the following equation:

$$I = C (dV/dt)$$

If the regulator or power supply minimum output current is more than the Stratix device requires, then the device may consume more current than the maximum current listed in Table 4–33. However, the device does not require any more current to successfully power up than what is listed in Table 4–33.

Table 4–33. Stra	Table 4–33. Stratix Power-Up Current (I _{CCINT}) Requirements								
Davisa	Power-Up Curre	Power-Up Current Requirement							
Device	Тур	Max	Unit						
EP1S10	250	700	mA						
EP1S20	400	1,200	mA						
EP1S25	500	1,500	mA						
EP1S30	550	1,900	mA						
EP1S40	650	2,300	mA						
EP1S60	800	2,600	mA						
EP1S80	1,000	3,000	mA						

The exact amount of current consumed varies according to the process, temperature, and power ramp rate. Stratix devices typically require less current during power up than shown in Table 4–33. The user-mode current during device operation is generally higher than the power-up current.

The duration of the I_{CCINT} power-up requirement depends on the V_{CCINT} voltage supply rise time. The power-up current consumption drops when the V_{CCINT} supply reaches approximately 0.75 V.

Timing Model

The DirectDrive technology and MultiTrack interconnect ensure predictable performance, accurate simulation, and accurate timing analysis across all Stratix device densities and speed grades. This section describes and specifies the performance, internal, external, and PLL timing specifications.

All specifications are representative of worst-case supply voltage and junction temperature conditions.

Preliminary & Final Timing

Timing models can have either preliminary or final status. The Quartus II software issues an informational message during the design compilation if the timing models are preliminary. Table 4–34 shows the status of the Stratix device timing models.

Preliminary status means the timing model is subject to change. Initially, timing numbers are created using simulation results, process data, and other known parameters. These tests are used to make the preliminary numbers as close to the actual timing parameters as possible.

Final timing numbers are based on actual device operation and testing. These numbers reflect the actual performance of the device under worst-case voltage and junction temperature conditions.

Table 4–34. Stratix Device Timing Model Status							
Device	Preliminary	Final					
EP1S10		✓					
EP1S20		✓					
EP1S25		✓					
EP1S30		✓					
EP1S40		✓					
EP1S60	✓						
EP1S80	✓						

Performance

Table 4–35 shows Stratix performance for some common designs. All performance values were obtained with Quartus II software compilation of LPM, or MegaCore functions for the FIR and FFT designs.

Table 4-35.	Stratix Performance	(Part 1 of 3)	Note	(1)				
			Resources Used			Performance (MHz)		
Resource Used	Design Size & Function	Mode	LEs	TriMatrix Memory Blocks	DSP Blocks	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade
LE	16-to-1 multiplexer (2)		22	0	0	346.74	302.84	263.71
	32-to-1 multiplexer (2)		46	0	0	265.18	233.04	207.16
	16-bit counter		16	0	0	422.11	422.11	390.01
	64-bit counter		64	0	0	316.05	293.16	255.42
TriMatrix memory	RAM 32 × 18 bit (2)	Simple dual- port	0	1	0	317.76	277.62	241.48
M512 block	FIFO 32 × 18 bit (2)		30	1	0	319.18	278.86	242.54

Table 4-35.	Stratix Performance	(Part 2 of 3)	Note	? (1)				
			R	esources U	sed	Perf	ormance (I	VIHz)
Resource Used	Design Size & Function	Mode	LEs	TriMatrix Memory Blocks	DSP Blocks	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade
TriMatrix memory M4K	RAM 128 × 36 bit (2)	Simple dual- port	0	1	0	290.86	255.55	222.27
block	RAM 256 × 18 bit (2)	True dual- port	0	1	0	290.86	255.55	222.27
	FIFO 128 × 36 bit (2)		34	1	0	280.42	255.55	222.27
TriMatrix memory	RAM 4K × 144 bit (2)	Simple dual- port	0	1	0	255.85	233.06	194.06
M-RAM block		Single port	0	1	0	255.85	233.06	194.06
		True dual- port	0	1	0	269.83	237.69	206.82
	RAM 8K × 72 bit (2)	Simple dual- port	0	1	0	275.86	223.13	194.02
		Single port	0	1	0	278.88	243.21	211.49
		True dual- port	0	1	0	269.84	237.74	206.73
	RAM 16K × 36 bit (2)	Simple dual- port	0	1	0	269.84	237.74	206.73
		Single port	0	1	0	280.64	254.36	221.17
		True dual- port	0	1	0	275.84	244.56	212.66
	RAM 32K × 18 bit (2)	Simple dual- port	0	1	0	275.84	244.56	212.66
		Single port	0	1	0	275.84	244.56	212.66
		True dual- port	0	1	0	287.83	253.33	220.29
	RAM 64K × 9 bit (2)	Simple dual- port	0	1	0	287.83	253.33	220.29
		Single port	0	1	0	287.83	253.33	220.29

Table 4–35. Stratix Performance (Part 3 of 3)				Note (1)						
			Resources Used Perf				ormance (MHz)			
Resource Used	Design Size & Function	Mode	LEs	TriMatrix Memory Blocks	DSP Blocks	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade		
DSP block	9 × 9-bit multiplier (3)		0	0	1	335.00	293.94	255.68		
	18 × 18-bit multiplier (3)		0	0	1	278.78	237.41	206.52		
	36 × 36-bit multiplier (3), (5)		0	0	1	148.25	134.71	117.16		
	36 × 36-bit multiplier (4), (5)		0	0	1	278.78	237.41	206.52		
	18-bit, 4-tap FIR filter		0	0	1	278.78	237.41	206.52		
Multiple resources	8-bit, 16-tap parallel FIR filter		58	0	4	146.41	133.35	115.14		
	8-bit, 1,024-point FFT function		870	5 (6)	1	239.46	229.46	201.40		

Notes to Table 4–35:

- (1) These design performance numbers were obtained using the Quartus II software.
- (2) This application uses registered inputs and outputs.
- (3) This application uses registered input and output stages within the DSP block.
- (4) This application uses registered input, pipeline, and output stages within the DSP block.
- (5) This is for a signed/signed or unsigned/unsigned case.
- (6) This design uses M4K TriMatrix memory blocks.

Internal Timing Parameters

Internal timing parameters are specified on a speed grade basis independent of device density. Tables 4–36 through 4–42 describe the Stratix device internal timing microparameters for LEs, IOEs, TriMatrix memory structures, DSP blocks, and MultiTrack interconnects.

Table 4–36. LE Internal Timing Microparameter Descriptions							
Symbol Parameter							
t_{SU}	LE register setup time before clock						
t _H	LE register hold time after clock						
t _{CO}	LE register clock-to-output delay						
t _{LUT}	LE combinatorial LUT delay for data-in to data-out						
t _{CLR}	Minimum clear pulse width						
t _{PRE}	Minimum preset pulse width						
t _{CLKHL}	Minimum clock high or low time						

Table 4–37. IOE Internal Timing Microparameter Descriptions							
Symbol	Parameter						
t _{SU}	IOE input and output register setup time before clock						
t _H	IOE input and output register hold time after clock						
t _{CO}	IOE input and output register clock-to-output delay						
t _{PIN2COMBOUT_R}	Row input pin to IOE combinatorial output						
t _{PIN2COMBOUT_C}	Column input pin to IOE combinatorial output						
t _{COMBIN2PIN_R}	Row IOE data input to combinatorial output pin						
t _{COMBIN2PIN_C}	Column IOE data input to combinatorial output pin						
t _{CLR}	Minimum clear pulse width						
t _{PRE}	Minimum preset pulse width						
t _{CLKHL}	Minimum clock high or low time						

Table 4–38. DSP Block Internal Timing Microparameter Descriptions							
Symbol	Parameter						
t _{SU}	Input, pipeline, and output register setup time before clock						
t _H	Input, pipeline, and output register hold time after clock						
t _{CO}	Input, pipeline, and output register clock-to-output delay						
t _{INREG2PIPE9}	Input Register to DSP Block pipeline register in 9×9 -bit mode						
t _{INREG2PIPE18}	Input Register to DSP Block pipeline register in 18 \times 18-bit mode						
t _{PIPE2OUTREG2ADD}	DSP Block Pipeline Register to output register delay in Two- Multipliers Adder mode						
t _{PIPE2OUTREG4ADD}	DSP Block Pipeline Register to output register delay in Four- Multipliers Adder mode						
t _{PD9}	Combinatorial input to output delay for 9 × 9						
t _{PD18}	Combinatorial input to output delay for 18 × 18						
t _{PD36}	Combinatorial input to output delay for 36 × 36						
t _{CLR}	Minimum clear pulse width						
t _{CLKHL}	Minimum clock high or low time						

Table 4–39. M512 Block Internal Timing MicroparameterDescriptions						
Symbol	Parameter					
t _{M512RC}	Synchronous read cycle time					
t _{M512WC}	Synchronous write cycle time					
t _{M512WERESU}	Write or read enable setup time before clock					
t _{M512WEREH}	Write or read enable hold time after clock					
t _{M512DATASU}	Data setup time before clock					
t _{M512DATAH}	Data hold time after clock					
t _{M512WADDRSU}	Write address setup time before clock					
t _{M512WADDRH}	Write address hold time after clock					
t _{M512RADDRSU}	Read address setup time before clock					
t _{M512RADDRH}	Read address hold time after clock					
t _{M512DATACO1}	Clock-to-output delay when using output registers					
t _{M512DATACO2}	Clock-to-output delay without output registers					
t _{M512CLKHL}	Minimum clock high or low time					
t _{M512CLR}	Minimum clear pulse width					

Table 4–40. M4K Block Internal Timing Microparameter Descriptions							
Symbol	Parameter						
t _{M4KRC}	Synchronous read cycle time						
t _{M4KWC}	Synchronous write cycle time						
t _{M4KWERESU}	Write or read enable setup time before clock						
t _{M4KWEREH}	Write or read enable hold time after clock						
t _{M4KBESU}	Byte enable setup time before clock						
t _{M4KBEH}	Byte enable hold time after clock						
t _{M4KDATAASU}	A port data setup time before clock						
t _{M4KDATAAH}	A port data hold time after clock						
t _{M4KADDRASU}	A port address setup time before clock						
t _{M4KADDRAH}	A port address hold time after clock						
t _{M4KDATABSU}	B port data setup time before clock						
t _{M4KDATABH}	B port data hold time after clock						
t _{M4KADDRBSU}	B port address setup time before clock						
t _{M4KADDRBH}	B port address hold time after clock						
t _{M4KDATACO1}	Clock-to-output delay when using output registers						
t _{M4KDATACO2}	Clock-to-output delay without output registers						
t _{M4KCLKHL}	Minimum clock high or low time						
t _{M4KCLR}	Minimum clear pulse width						

Table 4–41. M-RAM Block Internal Timing Microparameter Descriptions (Part 1 of 2)						
Symbol Parameter						
t _{MRAMRC}	Synchronous read cycle time					
t _{MRAMWC}	Synchronous write cycle time					
t _{MRAMWERESU}	Write or read enable setup time before clock					
t _{MRAMWEREH}	Write or read enable hold time after clock					
t _{MRAMBESU}	Byte enable setup time before clock					
t _{MRAMBEH}	Byte enable hold time after clock					
t _{MRAMDATAASU}	A port data setup time before clock					
t _{MRAMDATAAH}	A port data hold time after clock					
t _{MRAMADDRASU}	A port address setup time before clock					
t _{MRAMADDRAH}	A port address hold time after clock					

Table 4–41. M-RAM Block Internal Timing Microparameter Descriptions (Part 2 of 2)						
Symbol	Parameter					
t _{MRAMDATABSU}	B port setup time before clock					
t _{MRAMDATABH}	B port hold time after clock					
t _{MRAMADDRBSU}	B port address setup time before clock					
t _{MRAMADDRBH}	B port address hold time after clock					
t _{MRAMDATACO1}	Clock-to-output delay when using output registers					
t _{MRAMDATACO2}	Clock-to-output delay without output registers					
t _{MRAMCLKHL}	Minimum clock high or low time					
t _{MRAMCLR}	Minimum clear pulse width					

Table 4–42. Routing Delay Internal Timing Microparameter Descriptions						
Symbol	Parameter					
t _{R4}	Delay for an R4 line with average loading; covers a distance of four LAB columns					
t _{R8}	Delay for an R8 line with average loading; covers a distance of eight LAB columns					
t _{R24}	Delay for an R24 line with average loading; covers a distance of 24 LAB columns					
t _{C4}	Delay for an C4 line with average loading; covers a distance of four LAB rows					
t _{C8}	Delay for an C8 line with average loading; covers a distance of eight LAB rows					
t _{C16}	Delay for an C16 line with average loading; covers a distance of 16 LAB rows					
t _{LOCAL}	Local interconnect delay					

Figure 4–3 shows the TriMatrix memory waveforms for the M512, M4K, and M-RAM timing parameters shown in Tables 4–39 through 4–41 above.

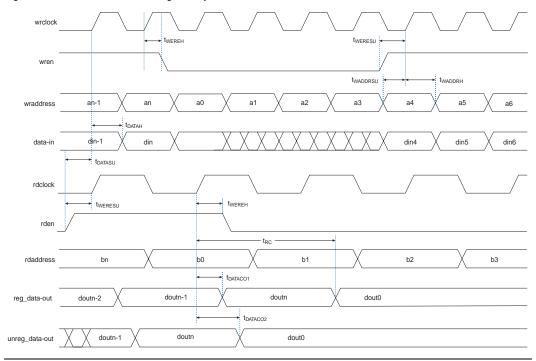


Figure 4-3. Dual-Port RAM Timing Microparameter Waveform

Internal timing parameters are specified on a speed grade basis independent of device density. Tables 4–43 through 4–48 show the internal timing microparameters for LEs, IOEs, TriMatrix memory structures, DSP blocks, and MultiTrack interconnects.

Table 4–43. LE Internal Timing Microparameters									
Cumbal	-	5	-6		-7		11:4		
Symbol	Min	Max	Min	Max	Min	Max	Unit		
t _{SU}	10		10		11		ps		
t _H	100		100		114		ps		
t _{CO}		156		176		202	ps		
t _{LUT}		366		459		527	ps		
t _{CLR}	100		100		114		ps		
t _{PRE}	100		100		114		ps		
t _{CLKHL}	100		100		114		ps		

Table 4–44. IOE Internal Timing Microparameters									
Cumbal		5	-	6	· -7				
Symbol	Min	Max	Min	Max	Min	Max	Unit		
t _{SU}	76		80		80		ps		
t _H	64		68		68		ps		
t _{CO}		162		171		171	ps		
t _{PIN2COMBOUT_R}		1,038		1,093		1,256	ps		
t _{PIN2COMBOUT_C}		927		976		1,122	ps		
t _{COMBIN2PIN_R}		2,944		3,099		3,563	ps		
t _{COMBIN2PIN_C}		3,189		3,357		3,860	ps		
t _{CLR}	262		276		317		ps		
t _{PRE}	262		276		317		ps		
t _{CLKHL}	90		95		109		ps		

Table 4–45. DSP Block Internal Timing Microparameters									
0	-	5	-6 -7			7	II-it		
Symbol	Min	Max	Min	Max	Min	Max	Unit		
t _{SU}	0		0		0		ps		
t _H	67		75		86		ps		
t _{CO}		142		158		181	ps		
t _{INREG2PIPE9}		2,613		2,982		3,429	ps		
t _{INREG2PIPE18}		3,390		3,993		4,591	ps		
t _{PIPE2OUTREG2ADD}		2,002		2,203		2,533	ps		
t _{PIPE2OUTREG4ADD}		2,899		3,189		3,667	ps		
t _{PD9}		3,709		4,081		4,692	ps		
t _{PD18}		4,795		5,275		6,065	ps		
t _{PD36}		7,495		8,245		9,481	ps		
t _{CLR}	450		500		575		ps		
t _{CLKHL}	1,350		1,500		1,724		ps		

Table 4-46. M51	Table 4–46. M512 Block Internal Timing Microparameters										
Cumbal	-	·5	-	-6	-	IImia					
Symbol	Min	Max	Min	Max	Min	Max	Unit				
t _{M512RC}		3,340		3,816		4,387	ps				
t _{M512WC}		3,138		3,590		4,128	ps				
t _{M512WERESU}	110		123		141		ps				
t _{M512WERH}	34		38		43		ps				
t _{M512DATASU}	110		123		141		ps				
t _{M512DATAH}	34		38		43		ps				
t _{M512WADDRASU}	110		123		141		ps				
t _{M512WADDRH}	34		38		43		ps				
t _{M512RADDRASU}	110		123		141		ps				
t _{M512RADDRH}	34		38		43		ps				
t _{M512DATACO1}		424		472		541	ps				
t _{M512DATACO2}		3,366		3,846		4,421	ps				
t _{M512CLKHL}	150		167		192		ps				
t _{M512CLR}	170		189		217		ps				

Table 4–47. M4K Block Internal Timing Microparameters (Part 1 of 2)										
Symbol		-5	-	-6	-	Unit				
	Min	Max	Min	Max	Min	Max	UIIIL			
t _{M4KRC}		3,807		4,320		4,967	ps			
t _{M4KWC}		2,556		2,840		3,265	ps			
t _{M4KWERESU}	131		149		171		ps			
t _{M4KWERH}	34		38		43		ps			
t _{M4KDATASU}	131		149		171		ps			
t _{M4KDATAH}	34		38		43		ps			
t _{M4KWADDRASU}	131		149		171		ps			
t _{M4KWADDRH}	34		38		43		ps			
t _{M4KRADDRASU}	131		149		171		ps			
t _{M4KRADDRH}	34		38		43		ps			
t _{M4KDATABSU}	131		149		171		ps			
t _{M4KDATABH}	34		38		43		ps			

Cumbal		-5		-6		-7	
Symbol	Min	Max	Min	Max	Min	Max	Unit
t _{M4KADDRBSU}	131		149		171		ps
t _{M4KADDRBH}	34		38		43		ps
t _{M4KDATACO1}		571		635		729	ps
t _{M4KDATACO2}		3,984		4,507		5,182	ps
t _{M4KCLKHL}	150		167		192		ps
t _{M4KCLR}	170		189		217		ps

Table 4–48. M-RAM Block Internal Timing Microparameters										
Cumbal	-	-5		·6		IImia				
Symbol	Min	Max	Min	Max	Min	Max	Unit			
t _{MRAMRC}		4,364		4,838		5,562	ps			
t _{MRAMWC}		3,654		4,127		4,746	ps			
t _{MRAMWERESU}	25		25		28		ps			
t _{MRAMWERH}	18		20		23		ps			
t _{MRAMDATASU}	25		25		28		ps			
t _{MRAMDATAH}	18		20		23		ps			
t _{MRAMWADDRASU}	25		25		28		ps			
t _{MRAMWADDRH}	18		20		23		ps			
t _{MRAMRADDRASU}	25		25		28		ps			
t _{MRAMRADDRH}	18		20		23		ps			
t _{MRAMDATABSU}	25		25		28		ps			
t _{MRAMDATABH}	18		20		23		ps			
t _{MRAMADDRBSU}	25		25		28		ps			
t _{MRAMADDRBH}	18		20		23		ps			
t _{MRAMDATACO1}		1,038		1,053		1,210	ps			
t _{MRAMDATACO2}		4,362		4,939		5,678	ps			
t _{MRAMCLKHL}	270		300		345		ps			
t _{MRAMCLR}	135		150		172		ps			

Routing delays vary depending on the load on that specific routing line. The Quartus II software reports the routing delay information when running the timing analysis for a design. Contact Altera Applications for more details.

External Timing Parameters

External timing parameters are specified by device density and speed grade. Figure 4–4 shows the timing model for bidirectional IOE pin timing. All registers are within the IOE.

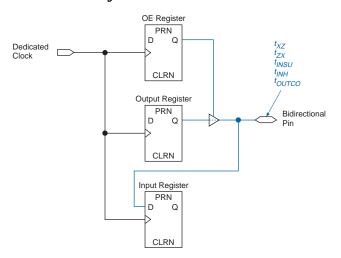


Figure 4-4. External Timing in Stratix Devices

All external I/O timing parameters shown are for 3.3-V LVTTL I/O standard with the maximum current strength and fast slew rate. For external I/O timing using standards other than LVTTL or for different current strengths, use the I/O standard input and output delay adders in Tables 4–94 through 4–98.

Table 4–49 shows the external I/O timing parameters when using fast regional clock networks.

	Table 4–49. Stratix Fast Regional Clock External I/O TimingParametersNotes (1), (2)							
Symbol	Parameter	Conditions						
t _{INSU}	Setup time for input or bidirectional pin using column IOE input register with fast regional clock fed by FCLK pin							
t _{INH}	Hold time for input or bidirectional pin using column IOE input register with fast regional clock fed by FCLK pin							
t _{OUTCO}	Clock-to-output delay output or bidirectional pin using column IOE output register with fast regional clock fed by FCLK pin	C _{LOAD} = 10 pF						
t _{XZ}	Synchronous column IOE output enable register to output pin disable delay using fast regional clock fed by FCLK pin	C _{LOAD} = 10 pF						
t _{ZX}	Synchronous column IOE output enable register to output pin enable delay using fast regional clock fed by FCLK pin	C _{LOAD} = 10 pF						

Notes to Table 4-49:

- (1) These timing parameters are sample-tested only.
- (2) These timing parameters are for column and row IOE pins. Designers should use the Quartus II software to verify the external timing for any pin.

Table 4–50 shows the external I/O timing parameters when using regional clock networks.

	50. Stratix Regional Clock External I/O Timing Paran Notes (1), (2)	meters (Part 1
Symbol	Parameter	Conditions
t _{INSU}	Setup time for input or bidirectional pin using column IOE input register with regional clock fed by CLK pin	
t _{INH}	Hold time for input or bidirectional pin using column IOE input register with regional clock fed by CLK pin	
t _{OUTCO}	Clock-to-output delay output or bidirectional pin using column IOE output register with regional clock fed by CLK pin	C _{LOAD} = 10 pF

	50. Stratix Regional Clock External I/O Timing Paran Notes (1), (2)	neters (Part 2
Symbol	Parameter	Conditions
t _{XZ}	Synchronous column IOE output enable register to output pin disable delay using regional clock fed by CLK pin	C _{LOAD} = 10 pF
t _{ZX}	Synchronous column IOE output enable register to output pin enable delay using regional clock fed by CLK pin	C _{LOAD} = 10 pF
t _{INSUPLL}	Setup time for input or bidirectional pin using column IOE input register with regional clock fed by Enhanced PLL with default phase setting	
t _{INHPLL}	Hold time for input or bidirectional pin using column IOE input register with regional clock fed by Enhanced PLL with default phase setting	
toutcopll	Clock-to-output delay output or bidirectional pin using column IOE output register with regional clock Enhanced PLL with default phase setting	C _{LOAD} = 10 pF
t _{XZPLL}	Synchronous column IOE output enable register to output pin disable delay using regional clock fed by Enhanced PLL with default phase setting	C _{LOAD} = 10 pF
t _{ZXPLL}	Synchronous column IOE output enable register to output pin enable delay using regional clock fed by Enhanced PLL with default phase setting	C _{LOAD} = 10 pF

Notes to Table 4-50:

- (1) These timing parameters are sample-tested only.
- (2) These timing parameters are for column IOE pins. Row IOE pins are 100- to 200-ps slower depending on device, speed grade, and the specific parameter in question. Designers should use the Quartus II software to verify the external timing for any pin.

Table 4–51 shows the external I/O timing parameters when using global clock networks.

	Table 4–51. Stratix Global Clock External I/O Timing Parameters Notes (1), (2)							
Symbol	Parameter	Conditions						
t _{INSU}	Setup time for input or bidirectional pin using column IOE input register with global clock fed by CLK pin							
t _{INH}	Hold time for input or bidirectional pin using column IOE input register with global clock fed by CLK pin							
t _{OUTCO}	Clock-to-output delay output or bidirectional pin using column IOE output register with global clock fed by CLK pin	C _{LOAD} = 10 pF						
t _{XZ}	Synchronous column IOE output enable register to output pin disable delay using global clock fed by CLK pin	C _{LOAD} = 10 pF						
t _{ZX}	Synchronous column IOE output enable register to output pin enable delay using global clock fed by CLK pin	C _{LOAD} = 10 pF						
t _{INSUPLL}	Setup time for input or bidirectional pin using column IOE input register with global clock fed by Enhanced PLL with default phase setting							
t _{INHPLL}	Hold time for input or bidirectional pin using column IOE input register with global clock fed by enhanced PLL with default phase setting							
toutcopll	Clock-to-output delay output or bidirectional pin using column IOE output register with global clock enhanced PLL with default phase setting	C _{LOAD} = 10 pF						
t _{XZPLL}	Synchronous column IOE output enable register to output pin disable delay using global clock fed by enhanced PLL with default phase setting	C _{LOAD} = 10 pF						
t _{ZXPLL}	Synchronous column IOE output enable register to output pin enable delay using global clock fed by enhanced PLL with default phase setting	C _{LOAD} = 10 pF						

Notes to Table 4-51:

- (1) These timing parameters are sample-tested only.
- (2) These timing parameters are for column IOE pins using a 3.3-V LVTTL, 24-mA setting. Row IOE pins are 100- to 250-ps slower depending on device, speed grade, and the specific parameter in question. Designers should use the Quartus II software to verify the external timing for any pin.

Tables 4–52 through 4–57 show the external timing parameters on column and row pins for EP1S10 devices.

Table 4–52. EP1\$10 Column Pin Fast Regional Clock External I/O Timing Parameters										
Cumbal	-5 Speed Grade -6 Speed Grade -7 Speed Grade									
Symbol	Min	Max	Min	Max	Min	Max	Unit			
t _{INSU}	2.244		2.374		2.714		ns			
t _{INH}	0.000		0.000		0.000		ns			
t _{OUTCO}	2.000	4.598	2.000	4.922	2.000	5.638	ns			
t _{XZ}		4.708		5.038		5.770	ns			
t _{ZX}		4.708		5.038		5.770	ns			

Table 4–53. EP1S10 Column Pin Regional Clock External I/O Timing Parameters										
Oh.a.l	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	1124				
Symbol	Min	Max	Min	Max	Min	Max	Unit			
t _{INSU}	2.114		2.174		2.483		ns			
t _{INH}	0.000		0.000		0.000		ns			
t _{OUTCO}	2.000	4.728	2.000	5.078	2.000	5.818	ns			
t _{XZ}		4.838		5.194		5.950	ns			
t _{ZX}		4.838		5.194		5.950	ns			
t _{INSUPLL}	1.035		0.941		1.070		ns			
t _{INHPLL}	0.000		0.000		0.000		ns			
t _{OUTCOPLL}	0.500	2.629	0.500	2.769	0.500	3.158	ns			
t _{XZPLL}		2.739		2.885		3.290	ns			
t _{ZXPLL}		2.739		2.885		3.290	ns			

Table 4–54. EP1S10 Column Pin Global Clock External I/O Timing Parameters

Cumbal	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	Unit	
Symbol	Min	Max	Min	Max	Min	Max	UIIIL
t _{INSU}	1.699		1.748		1.993		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	5.143	2.000	5.504	2.000	6.308	ns
t _{XZ}		5.253		5.620		6.440	ns
t _{ZX}		5.253		5.620		6.440	ns
t _{INSUPLL}	0.988		0.936		1.066		ns
t _{INHPLL}	0.000		0.000		0.000		ns
t _{OUTCOPLL}	0.500	2.634	0.500	2.774	0.500	3.162	ns
t _{XZPLL}		2.744		2.890		3.294	ns
t _{ZXPLL}		2.744		2.890		3.294	ns

Table 4–55. EP1S10 Row Pin Fast Regional Clock External I/O Timing Parameters

Symbol	-5 Speed Grade		-5 Speed Grade -6 Speed Grade		-7 Spee	Unit	
Syllibul	Min	Max	Min	Max	Min	Max	UIIIL
t _{INSU}	2.177		2.366		2.705		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	4.973	2.000	4.989	2.000	5.485	ns
t _{XZ}		5.210		5.238		5.771	ns
t _{ZX}		5.210		5.238		5.771	ns

Table 4–56. EP1S10 Row Pin Regional Clock External I/O Timing Parameters

Symbol	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	UIIIL
t _{INSU}	2.244		2.413		2.760		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	4.906	2.000	4.942	2.000	5.430	ns
t _{XZ}		5.143		5.191		5.716	ns
t _{ZX}		5.143		5.191		5.716	ns
t _{INSUPLL}	1.126		1.186		1.352		ns
t _{INHPLL}	0.000		0.000		0.000		ns
t _{OUTCOPLL}	0.500	2.804	0.500	2.627	0.500	2.765	ns
t _{XZPLL}		3.041		2.876		3.051	ns
t _{ZXPLL}		3.041		2.876		3.051	ns

Table 4–57. EP1S10 Row Pin Global Clock External I/O Timing Parameters

Symbol	-5 Speed Grade		-6 Spee	d Grade	-7 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	UIIIL
t _{INSU}	1.790		1.947		2.223		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	5.360	2.000	5.408	2.000	5.967	ns
t _{XZ}		5.597		5.657		6.253	ns
t_{ZX}		5.597		5.657		6.253	ns
t _{INSUPLL}	1.126		1.186		1.352		ns
t _{INHPLL}	0.000		0.000		0.000		ns
t _{OUTCOPLL}	0.500	2.804	0.500	2.627	0.500	2.765	ns
t _{XZPLL}		3.041		2.876		3.051	ns
t _{ZXPLL}		3.041		2.876		3.051	ns

Tables 4–58 through 4–63 show the external timing parameters on column and row pins for EP1S20 devices.

Table 4–58. EP1S20 Column Pin Fast Regional Clock External I/O Timing Parameters										
0 1 1	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade					
Symbol	Min	Max	Min	Max	Min	Max	Unit			
t _{INSU}	2.113		2.250		2.571		ns			
t _{INH}	0.000		0.000		0.000		ns			
t _{OUTCO}	2.000	4.671	2.000	5.002	2.000	5.730	ns			
t _{XZ}		4.781		5.118		5.862	ns			
t _{ZX}		4.781		5.118		5.862	ns			

Table 4–59. EP1S20 Column Pin Regional Clock External I/O Timing Parameters										
O	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade				
Symbol	Min	Max	Min	Max	Min	Max	Unit			
t _{INSU}	1.763		1.906		2.177		ns			
t _{INH}	0.000		0.000		0.000		ns			
t _{OUTCO}	2.000	4.979	2.000	5.346	2.000	6.124	ns			
t _{XZ}		5.089		5.462		6.256	ns			
t _{ZX}		5.089		5.462		6.256	ns			
t _{INSUPLL}	0.926		0.978		1.112		ns			
t _{INHPLL}	0.000		0.000		0.000		ns			
t _{OUTCOPLL}	0.500	2.638	0.500	2.776	0.500	3.167	ns			
t _{XZPLL}		2.748		2.892		3.299	ns			
t _{ZXPLL}		2.748		2.892		3.299	ns			

Table 4–60. EP1\$20	Column Pin Globa	l Clock External I/C) Timing
Parameters			

Symbol	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	1.493		1.675		1.862		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	5.249	2.000	5.621	2.000	6.439	ns
t _{XZ}		5.359		5.737		6.571	ns
t _{ZX}		5.359		5.737		6.571	ns
t _{INSUPLL}	0.874		0.926		1.103		ns
t _{INHPLL}	0.000		0.000		0.000		ns
t _{OUTCOPLL}	0.500	2.648	0.500	2.784	0.500	3.176	ns
t _{XZPLL}		2.758		2.900		3.308	ns
t _{ZXPLL}		2.758		2.900		3.308	ns

Table 4–61. EP1S20 Row Pin Fast Regional Clock External I/O Timing Parameters

Symbol	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max	UIII	
t _{INSU}	1.997		2.170		2.481		ns	
t _{INH}	0.000		0.000		0.000		ns	
t _{outco}	2.000	4.653	2.000	4.985	2.000	5.709	ns	
t _{XZ}		4.890		5.234		5.995	ns	
t _{ZX}		4.890		5.234		5.995	ns	

Table 4–62. EP1S20 Row Pin Regional Clock External I/O Timing Parameters

Symbol	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	UIIIL
t _{INSU}	1.999		2.146		2.456		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	4.651	2.000	5.009	2.000	5.734	ns
t _{XZ}		4.888		5.258		6.020	ns
t _{ZX}		4.888		5.258		6.020	ns
t _{INSUPLL}	1.126		1.186		1.352		ns
t _{INHPLL}	0.000		0.000		0.000		ns
t _{OUTCOPLL}	0.500	2.304	0.500	2.427	0.500	2.765	ns
t _{XZPLL}		2.541		2.676		3.051	ns
t _{ZXPLL}		2.541		2.676		3.051	ns

-5 Speed Grade -6 Speed Grade -7 Speed Grade Symbol Unit Min Max Min Max Min Max 1.826 2.089 1.684 t_{INSU} ns 0.000 0.000 0.000 ns t_{INH} 2.000 4.966 2.000 5.329 2.000 6.101 ns toutco 5.203 5.578 6.387 t_{XZ} ns 5.203 5.578 6.387 ns t_{ZX} 1.126 1.186 1.352 ns t_{INSUPLL}

0.000

0.500

2.427

2.676

2.676

0.000

0.500

0.000

0.500

2.304

2.541

2.541

tINHPLL

 t_{XZPLL}

 t_{ZXPLL}

 t_{OUTCOPLL}

Table 4-63. EP1S20 Row Pin Global Clock External I/O Timing Parameters

ns

ns

ns

ns

2.765

3.051

3.051

Tables 4–64 through 4–69 show the external timing parameters on column and row pins for EP1S25 devices.

Table 4–64. EP1S25 Column Pin Fast Regional Clock External I/O Timing Parameters										
Cumbal	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade					
Symbol	Min	Max	Min	Max	Min	Max	Unit			
t _{INSU}	2.416		2.615		2.960		ns			
t _{INH}	0.000		0.000		0.000		ns			
t _{OUTCO}	2.000	4.526	2.000	4.837	2.000	5.541	ns			
t _{XZ}		4.636		4.953		5.673	ns			
t _{ZX}		4.636		4.953		5.673	ns			

Table 4–65. EP1S25 Column Pin Regional Clock External I/O Timing Parameters										
Oh.a.l	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	11!4			
Symbol	Min	Max	Min	Max	Min	Max	Unit			
t _{INSU}	1.713		1.838		2.120		ns			
t _{INH}	0.000		0.000		0.000		ns			
t _{OUTCO}	2.000	5.229	2.000	5.614	2.000	6.432	ns			
t _{XZ}		5.339		5.730		6.564	ns			
t _{ZX}		5.339		5.730		6.564	ns			
t _{INSUPLL}	1.061		1.155		1.233		ns			
t _{INHPLL}	0.000		0.000		0.000		ns			
t _{OUTCOPLL}	0.500	2.661	0.500	2.799	0.500	3.195	ns			
t _{XZPLL}		2.771		2.915		3.327	ns			
t _{ZXPLL}		2.771		2.915		3.327	ns			

Table 4–66. EP1S25 Column Pin Global Clock External I/O Timing Parameters

Symbol	-5 Spee	d Grade	-6 Spee	d Grade	-7 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	UIIIL
t _{INSU}	1.748		1.883		2.171		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	5.194	2.000	5.569	2.000	6.381	ns
t _{XZ}		5.304		5.685		6.513	ns
t _{ZX}		5.304		5.685		6.513	ns
t _{INSUPLL}	1.088		1.097		1.220		ns
t _{INHPLL}	0.000		0.000		0.000		ns
t _{OUTCOPLL}	0.500	2.676	0.500	2.813	0.500	3.208	ns
t _{XZPLL}		2.786		2.929		3.340	ns
t _{ZXPLL}		2.786		2.929		3.340	ns

Table 4–67. EP1S25 Row Pin Fast Regional Clock External I/O Timing Parameters

Symbol	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max	Ullit	
t _{INSU}	2.371		2.566		2.902		ns	
t _{INH}	0.000		0.000		0.000		ns	
t _{OUTCO}	2.000	4.479	2.000	4.789	2.000	5.488	ns	
t _{XZ}		4.716		5.038		5.774	ns	
t _{ZX}		4.716		5.038		5.774	ns	

Table 4–68. EP1S25 Row Pin Regional Clock External I/O Timing Parameters

Cumbal	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		Unit
Symbol	Min	Max	Min	Max	Min	Max	UIIIL
t _{INSU}	1.970		2.109		2.377		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	4.880	2.000	5.246	2.000	6.013	ns
t _{XZ}		5.117		5.495		6.299	ns
t _{ZX}		5.117		5.495		6.299	ns
t _{INSUPLL}	1.326		1.386		1.552		ns
t _{INHPLL}	0.000		0.000		0.000		ns
t _{OUTCOPLL}	0.500	2.304	0.500	2.427	0.500	2.765	ns
t _{XZPLL}		2.541		2.676		3.051	ns
t _{ZXPLL}		2.541		2.676		3.051	ns

Table 4–69. EP1S25 Row Pin Global Clock External I/O Timing Parameters

Symbol	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		Unit
Syllibul	Min	Max	Min	Max	Min	Max	Ullit
t _{INSU}	1.963		2.108		2.379		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	4.887	2.000	5.247	2.000	6.011	ns
t _{XZ}		5.124		5.496		6.297	ns
t _{ZX}		5.124		5.496		6.297	ns
t _{INSUPLL}	1.326		1.386		1.552		ns
t _{INHPLL}	0.000		0.000		0.000		ns
toutcopll	0.500	2.304	0.500	2.427	0.500	2.765	ns
t _{XZPLL}		2.541		2.676		3.051	ns
t _{ZXPLL}		2.541		2.676		3.051	ns

Tables 4–70 through 4–75 show the external timing parameters on column and row pins for EP1S30 devices.

Table 4–70. EP1S30 Column Pin Fast Regional Clock External I/O Timing Parameters										
Symbol	-5 Spee	-5 Speed Grade -6 Speed Grade -7 Speed Grade								
	Min	Max	Min	Max	Min	Max				
t _{INSU}	2.508		2.729		3.108		ns			
t _{INH}	0.000		0.000		0.000		ns			
t _{OUTCO}	2.000	5.014	2.000	5.415	2.000	6.204	ns			
t _{XZ}		5.124		5.531		6.336	ns			
t _{ZX}		5.124		5.531		6.336	ns			

	Table 4–71. EP1S30 Column Pin Regional Clock External I/O Timing Parameters										
Cumbal	-5 Speed Grade		-6 Speed Grade		-7 Spee	d Grade	II.m.i.k				
Symbol	Min	Max	Min	Max	Min	Max	Unit				
t _{INSU}	2.483		2.578		2.935		ns				
t _{INH}	0.000		0.000		0.000		ns				
t _{OUTCO}	2.000	5.081	2.000	5.522	2.000	6.326	ns				
t _{XZ}		5.191		5.638		6.458	ns				
t _{ZX}		5.191		5.638		6.458	ns				
t _{INSUPLL}	0.992		1.042		1.166		ns				
t _{INHPLL}	0.000		0.000		0.000		ns				
t _{OUTCOPLL}	0.500	2.630	0.500	2.768	0.500	3.162	ns				
t _{XZPLL}		2.740		2.884		3.294	ns				
t _{ZXPLL}		2.740		2.884		3.294	ns				

Table 4–72. EP1S30 Column Pin Global Clock External I/O Timing Parameters

Cumbal	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		Unit
Symbol	Min	Max	Min	Max	Min	Max	Ullit
t _{INSU}	2.109		2.171		2.467		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	5.455	2.000	5.929	2.000	6.794	ns
t _{XZ}		5.565		6.045		6.926	ns
t _{ZX}		5.565		6.045		6.926	ns
t _{INSUPLL}	1.020		1.065		1.204		ns
t _{INHPLL}	0.000		0.000		0.000		ns
t _{OUTCOPLL}	0.500	2.602	0.500	2.745	0.500	3.124	ns
t _{XZPLL}		2.712		2.861		3.256	ns
t _{ZXPLL}		2.712		2.861		3.256	ns

Table 4–73. EP1S30 Row Pin Fast Regional Clock External I/O Timing Parameters

Symbol	-5 Spee	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade	
Syllibul	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	2.581		2.771		3.169		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	4.749	2.000	5.132	2.000	5.881	ns
t _{XZ}		4.986		5.381		6.167	ns
t_{ZX}		4.986		5.381		6.167	ns

Table 4–74. EP1S30 Row Pin Regional Clock External I/O Timing Parameters

Cumbal	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		Unit
Symbol	Min	Max	Min	Max	Min	Max	UIIIL
t _{INSU}	2.576		2.723		3.118		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	4.754	2.000	5.180	2.000	5.932	ns
t _{XZ}		4.991		5.429		6.218	ns
t _{ZX}		4.991		5.429		6.218	ns
t _{INSUPLL}	1.126		1.186		1.352		ns
t _{INHPLL}	0.000		0.000		0.000		ns
t _{OUTCOPLL}	0.500	2.304	0.500	2.427	0.500	2.765	ns
t _{XZPLL}		2.541		2.676		3.051	ns
t _{ZXPLL}		2.541		2.676		3.051	ns

Table 4–75. EP1S30 Row Pin Global Clock External I/O Timing Parameters

Cumbal	-5 Speed Grade		-6 Spee	-6 Speed Grade		-7 Speed Grade		
Symbol	Min	Max	Min	Max	Min	Max	Unit	
t _{INSU}	2.217		2.332		2.667		ns	
t _{INH}	0.000		0.000		0.000		ns	
t _{outco}	2.000	5.113	2.000	5.571	2.000	6.383	ns	
t _{XZ}		5.350		5.820		6.669	ns	
t _{ZX}		5.350		5.820		6.669	ns	
t _{INSUPLL}	1.126		1.186		1.352		ns	
t _{INHPLL}	0.000		0.000		0.000		ns	
toutcopll	0.500	2.304	0.500	2.427	0.500	2.765	ns	
t _{XZPLL}		2.541		2.676		3.051	ns	
t _{ZXPLL}		2.541		2.676		3.051	ns	

Tables 4–76 through 4–81 show the external timing parameters on column and row pins for EP1S40 devices.

	Table 4–76. EP1S40 Column Pin Fast Regional Clock External I/O Timing Parameters										
Cumbal	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade					
Symbol	Min	Max	Min	Max	Min	Max	Unit				
t _{INSU}	2.700		2.910		3.232		ns				
t _{INH}	0.000		0.000		0.000		ns				
t _{OUTCO}	2.000	5.064	2.000	5.434	2.000	6.229	ns				
t _{XZ}		5.174		5.550		6.361	ns				
t _{ZX}		5.174		5.550		6.361	ns				

Table 4–77 Parameter		Column P	in Region	al Clock E	xternal I/C) Timing	
Symbol	-5 Spee	d Grade	-6 Spee	-6 Speed Grade		d Grade	11:4
	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	2.467		2.627		3.011		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	5.255	2.000	5.673	2.000	6.501	ns
t _{XZ}		5.365		5.789		6.633	ns
t _{ZX}		5.365		5.789		6.633	ns
t _{INSUPLL}	1.212		1.303		1.394		ns
t _{INHPLL}	0.000		0.000		0.000		ns
t _{OUTCOPLL}	0.500	2.610	0.500	2.751	0.500	3.134	ns
t _{XZPLL}		2.720		2.867		3.266	ns
t _{ZXPLL}		2.720		2.867		3.266	ns

Table 4–78. EP1S40 Column Pin Global Clock External I/O Timing Parameters

Symbol	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		Unit
Syllibul	Min	Max	Min	Max	Min	Max	Ullit
t _{INSU}	2.033		2.184		2.451		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	5.689	2.000	6.116	2.000	7.010	ns
t _{XZ}		5.799		6.232		7.142	ns
t _{ZX}		5.799		6.232		7.142	ns
t _{INSUPLL}	1.270		1.278		1.466		ns
t _{INHPLL}	0.000		0.000		0.000		ns
t _{OUTCOPLL}	0.500	2.594	0.500	2.732	0.500	3.113	ns
t _{XZPLL}		2.704		2.848		3.245	ns
t _{ZXPLL}		2.704		2.848		3.245	ns

Table 4–79. EP1S40 Row Pin Fast Regional Clock External I/O Timing Parameters

Cumbal	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		Unit
Symbol	Min	Max	Min	Max	Min	Max	UIIIL
t _{INSU}	2.437		2.648		3.029		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	4.893	2.000	5.255	2.000	6.021	ns
t _{XZ}		5.130		5.504		6.307	ns
t _{ZX}		5.130		5.504		6.307	ns

Table 4–80. EP1S40 Row Pin Regional Clock External I/O Timing Parameters

Symbol	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		Hait
	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	2.398		2.567		2.938		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	4.932	2.000	5.336	2.000	6.112	ns
t _{XZ}		5.169		5.585		6.398	ns
t _{ZX}		5.169		5.585		6.398	ns
t _{INSUPLL}	1.126		1.186		1.352		ns
t _{INHPLL}	0.000		0.000		0.000		ns
t _{OUTCOPLL}	0.500	2.304	0.500	2.427	0.500	2.765	ns
t _{XZPLL}		2.541		2.676		3.051	ns
t _{ZXPLL}		2.541		2.676		3.051	ns

-5 Speed Grade -6 Speed Grade -7 Speed Grade Symbol Unit Min Max Min Max Min Max 1.965 2.128 2.429 ns t_{INSU} 0.000 0.000 0.000 ns t_{INH} 2.000 5.365 2.000 5.775 2.000 6.621 ns toutco 5.602 6.024 6.907 ns t_{XZ} 5.602 6.024 6.907 ns t_{ZX} 1.126 1.186 1.352 ns t_{INSUPLL}

0.000

0.500

2.427

2.676

2.676

0.000

0.500

0.000

0.500

2.304

2.541

2.541

t_{INHPLL}

 t_{XZPLL}

 t_{ZXPLL}

 t_{OUTCOPLL}

Table 4-81. EP1S40 Row Pin Global Clock External I/O Timing Parameters

ns

ns

ns

ns

2.765

3.051

3.051

Tables 4–82 through 4–87 show the external timing parameters on column and row pins for EP1S60 devices.

Table 4–82. EP1S60 Column Pin Fast Regional Clock External I/O Timing Parameters								
Symbol	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		Hait	
	Min	Max	Min	Max	Min	Max	Unit	
t _{INSU}	2.248		2.485		2.841		ns	
t _{INH}	0.000		0.000		0.000		ns	
t _{OUTCO}	2.000	5.120	2.000	4.901	2.000	5.705	ns	
t _{XZ}		5.230		5.617		6.437	ns	
t _{ZX}		5.230		5.617		6.437	ns	

Table 4–83. EP1S60 Column Pin Regional Clock External I/O Timing Parameters								
Symbol	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		Hait	
	Min	Max	Min	Max	Min	Max	Unit	
t _{INSU}	1.928		2.118		2.421		ns	
t _{INH}	0.000		0.000		0.000		ns	
t _{OUTCO}	2.000	5.441	2.000	5.268	2.000	6.125	ns	
t _{XZ}		5.551		5.984		6.857	ns	
t _{ZX}		5.551		5.984		6.857	ns	
t _{INSUPLL}	0.961		0.968		1.103		ns	
t _{INHPLL}	0.000		0.000		0.000		ns	
t _{OUTCOPLL}	0.500	2.603	0.500	2.142	0.500	2.525	ns	
t _{XZPLL}		2.713		2.858		3.257	ns	
t _{ZXPLL}		2.713		2.858		3.257	ns	

Table 4–84. EP1S60 Column Pin Global Clock External I/O Timing Parameters

Cumbal	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	Unit
Symbol	Min	Max	Min	Max	Min	Max	Oiiit
t _{INSU}	1.403		1.517		1.732		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	6.008	2.000	5.869	2.000	6.814	ns
t _{XZ}		6.118		6.585		7.546	ns
t _{ZX}		6.118		6.585		7.546	ns
t _{INSUPLL}	0.879		0.931		1.059		ns
t _{INHPLL}	0.000		0.000		0.000		ns
t _{OUTCOPLL}	0.500	2.643	0.500	2.179	0.500	2.569	ns
t _{XZPLL}		2.753		2.895		3.301	ns
t _{ZXPLL}		2.753		2.895		3.301	ns

Table 4–85. EP1S60 Row Pin Fast Regional Clock External I/O Timing Parameters

Symbol	-5 Spee	d Grade	-6 Speed Grade		-7 Spee	Unit	
Syllibul	Min	Max	Min	Max	Min	Max	Ullit
t _{INSU}	2.367		2.561		2.928		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	4.910	2.000	5.284	2.000	6.056	ns
t _{XZ}		5.147		5.533		6.342	ns
t _{ZX}		5.147		5.533		6.342	ns

Table 4–86. EP1S60 Row Pin Regional Clock External I/O Timing Parameters

Cumbal	-5 Speed Grade		-6 Spee	-6 Speed Grade		-7 Speed Grade		
Symbol	Min	Max	Min	Max	Min	Max	Unit	
t _{INSU}	2.157		2.309		2.644		ns	
t _{INH}	0.000		0.000		0.000		ns	
t _{OUTCO}	2.000	5.120	2.000	5.536	2.000	6.340	ns	
t _{XZ}		5.357		5.785		6.626	ns	
t _{ZX}		5.357		5.785		6.626	ns	
t _{INSUPLL}	1.126		1.186		1.352		ns	
t _{INHPLL}	0.000		0.000		0.000		ns	
t _{OUTCOPLL}	0.500	2.304	0.500	2.427	0.500	2.765	ns	
t _{XZPLL}		2.541		2.676		3.051	ns	
t _{ZXPLL}		2.541		2.676		3.051	ns	

Table 4–87. EP1S60 Row Pin Global Clock External I/O Timing Parameters

						-	
Cumbal	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	Unit
Symbol	Min	Max	Min	Max	Min	Max	Uiiit
t _{INSU}	1.546		1.662		1.901		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	5.731	2.000	6.183	2.000	7.083	ns
t _{XZ}		5.968		6.432		7.369	ns
t _{ZX}		5.968		6.432		7.369	ns
t _{INSUPLL}	1.126		1.186		1.352		ns
t _{INHPLL}	0.000		0.000		0.000		ns
t _{OUTCOPLL}	0.500	2.304	0.500	2.427	0.500	2.765	ns
t _{XZPLL}		2.541		2.676		3.051	ns
t _{ZXPLL}		2.541		2.676		3.051	ns

Tables 4–88 through 4–93 show the external timing parameters on column and row pins for EP1S80 devices.

Table 4–88. EP1S80 Column Pin Fast Regional Clock External I/O Timing Parameters										
-5 Speed Grade -6 Speed Grade -7 Speed Grade										
Symbol	Min	Max	Min	Max	Max Min Max					
t _{INSU}	2.290		2.531		2.842		ns			
t _{INH}	0.000		0.000		0.000		ns			
t _{OUTCO}	2.000	5.079	2.000	4.555	2.000	5.353	ns			
t _{XZ}		5.189		5.571		6.385	ns			
t _{ZX}		5.189		5.571		6.385	ns			

	Table 4–89. EP1S80 Column Pin Regional Clock External I/O Timing Parameters										
O. mah al	-5 Spee	d Grade	-6 Speed Grade -7 Speed Grad		d Grade	II.mid					
Symbol	Min	Max	Min	Max	Min	Max	Unit				
t _{INSU}	1.939		2.088		2.439		ns				
t _{INH}	0.000		0.000		0.000		ns				
t _{OUTCO}	2.000	5.430	2.000	4.954	2.000	5.807	ns				
t _{XZ}		5.540		5.970		6.839	ns				
t _{ZX}		5.540		5.970		6.839	ns				
t _{INSUPLL}	0.936		0.995		1.131		ns				
t _{INHPLL}	0.000		0.000		0.000		ns				
toutcopll	0.500	2.586	0.500	1.815	0.500	2.197	ns				
t _{XZPLL}		2.696		2.831		3.229	ns				
t _{ZXPLL}		2.696		2.831		3.229	ns				

Table 4–90. EP1S80 Column Pin Global Clock External I/O Timing Parameters

Cumbal	-5 Speed Grade		-6 Spee	d Grade	-7 Spee	Unit	
Symbol	Min	Max	Min	Max	Min	Max	Ullit
t _{INSU}	1.225		1.330		1.516		ns
t _{INH}	0.000		0.000		0.000		ns
t _{outco}	2.000	6.186	2.000	5.756	2.000	6.730	ns
t _{XZ}		6.296		6.772		7.762	ns
t _{ZX}		6.296		6.772		7.762	ns
t _{INSUPLL}	0.921		0.931		1.110		ns
t _{INHPLL}	0.000		0.000		0.000		ns
t _{OUTCOPLL}	0.500	2.643	0.500	1.879	0.500	2.269	ns
t _{XZPLL}		2.753		2.895		3.301	ns
t _{ZXPLL}		2.753		2.895		3.301	ns

Table 4–91. EP1S80 Row Pin Fast Regional Clock External I/O Timing Parameters

Symbol	-5 Speed Grade		-6 Speed Grade		-7 Spee	Unit	
Syllibul	Min	Max	Min	Max	Min	Max	UIIIL
t _{INSU}	2.407		2.606		2.982		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	4.870	2.000	5.239	2.000	6.002	ns
t _{XZ}		5.107		5.488		6.288	ns
t _{ZX}		5.107		5.488		6.288	ns

Table 4–92 Parameter		Row Pin F	Regional (Clock Exte	rnal I/O Ti	ming	
Cumb al	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	11
Symbol	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	2.168		2.324		2.662		ns
t _{INH}	0.000		0.000		0.000		ns
t _{OUTCO}	2.000	5.109	2.000	5.521	2.000	6.322	ns
t _{XZ}		5.346		5.770		6.608	ns
t _{ZX}		5.346		5.770		6.608	ns
t _{INSUPLL}	1.126		1.186		1.352		ns
t _{INHPLL}	0.000		0.000		0.000		ns
t _{OUTCOPLL}	0.500	2.304	0.500	2.427	0.500	2.765	ns
t _{XZPLL}		2.541		2.676		3.051	ns
t _{ZXPLL}		2.541		2.676		3.051	ns

Table 4-93	Table 4–93. EP1S80 Global Clock External I/O Timing Parameters										
Cumbal	-5 Speed Grade		-6 Spee	-6 Speed Grade		-7 Speed Grade					
Symbol	Min	Max	Min	Max	Min	Max	Unit				
t _{INSU}	1.368		1.475		1.685		ns				
t _{INH}	0.000		0.000		0.000		ns				
t _{OUTCO}	2.000	5.909	2.000	6.370	2.000	7.299	ns				
t _{XZ}		6.146		6.619		7.585	ns				
t _{ZX}		6.146		6.619		7.585	ns				
t _{INSUPLL}	1.126		1.186		1.352		ns				
t _{INHPLL}	0.000		0.000		0.000		ns				
t _{OUTCOPLL}	0.500	2.304	0.500	2.427	0.500	2.765	ns				
t _{XZPLL}		2.541		2.676		3.051	ns				
t _{ZXPLL}		2.541		2.676		3.051	ns				

External I/O Delay Parameters

External I/O delay timing parameters for I/O standard input and output adders and programmable input and output delays are specified by speed grade independent of device density.

Tables 4–94 through 4–99 show the adder delays associated with column and rowI/O pins for flip-chip and wire-bond packages. If an I/O standard is selected other than LVTTL 24 mA with a fast slew rate, add the selected delay to the external $\rm t_{CO}$ and $\rm t_{SU}$ I/O parameters shown in Tables 4–43 through 4–48.

Table 4–94. Stratix I/O S	Standard Colu	ımn Pin Inpu	t Delay Add	lers			
I/O Chandand	-5 Spec	ed Grade	-6 Spe	ed Grade	-7 Spe	ed Grade	11
I/O Standard	Min	Max	Min	Max	Min	Max	Unit
LVCMOS		0		0		0	ps
3.3-V LVTTL		0		0		0	ps
2.5-V LVTTL		30		31		35	ps
1.8-V LVTTL		150		157		180	ps
1.5-V LVTTL		210		220		252	ps
GTL		220		231		265	ps
GTL+		220		231		265	ps
3.3-V PCI		0		0		0	ps
3.3-V PCI-X 1.0		0		0		0	ps
Compact PCI		0		0		0	ps
AGP 1×		0		0		0	ps
AGP 2×		0		0		0	ps
CTT		120		126		144	ps
SSTL-3 class I		-30		-32		-37	ps
SSTL-3 class II		-30		-32		-37	ps
SSTL-2 class I		-70		-74		-86	ps
SSTL-2 class II		-70		-74		-86	ps
SSTL-18 class I		180		189		217	ps
SSTL-18 class II		180		189		217	ps
1.5-V HSTL class I		120		126		144	ps
1.5-V HSTL class II		120		126		144	ps
1.8-V HSTL class I		70		73		83	ps
1.8-V HSTL class II		70		73		83	ps

Table 4–95. Stratix I/O S	Standard Row	Pin Input De	elay Adders	,			
1/0 0111	-5 Spee	ed Grade	-6 Spe	ed Grade	-7 Spe	ed Grade	11
I/O Standard	Min	Max	Min	Max	Min	Max	Unit
LVCMOS		0		0		0	ps
3.3-V LVTTL		0		0		0	ps
2.5-V LVTTL		30		31		35	ps
1.8-V LVTTL		150		157		180	ps
1.5-V LVTTL		210		220		252	ps
GTL		0		0		0	ps
GTL+		220		231		265	ps
3.3-V PCI		0		0		0	ps
3.3-V PCI-X 1.0		0		0		0	ps
Compact PCI		0		0		0	ps
AGP 1×		0		0		0	ps
AGP 2×		0		0		0	ps
СТТ		80		84		96	ps
SSTL-3 class I		-30		-32		-37	ps
SSTL-3 class II		-30		-32		-37	ps
SSTL-2 class I		-70		-74		-86	ps
SSTL-2 class II		-70		-74		-86	ps
SSTL-18 class I		180		189		217	ps
SSTL-18 class II		0		0		0	ps
1.5-V HSTL class I		130		136		156	ps
1.5-V HSTL class II		0		0		0	ps
1.8-V HSTL class I		70		73		83	ps
1.8-V HSTL class II		70		73		83	ps
LVDS (1)		40		42		48	ps
LVPECL (1)		-50		-53		-61	ps
3.3-V PCML (1)		330		346		397	ps
HyperTransport (1)		80		84		96	ps

Table 4-96. S	tratix I/O Stai	ndard Outp	out Delay Add	lers for Fas	st Slew Rate	on Column	Pins (Part 1	of 2)
		-5 Spe	ed Grade	-6 Spe	ed Grade	-7 Spe	ed Grade	
Standa	ard	Min	Max	Min	Max	Min	Max	Unit
LVCMOS	2 mA		570		599		689	ps
	4 mA		570		599		689	ps
	8 mA		350		368		423	ps
	12 mA		130		137		157	ps
	24 mA		0		0		0	ps
3.3-V LVTTL	4 mA		570		599		689	ps
	8 mA		350		368		423	ps
	12 mA		130		137		157	ps
	16 mA		70		74		85	ps
	24 mA		0		0		0	ps
2.5-V LVTTL	2 mA		830		872		1,002	ps
	8 mA		250		263		302	ps
	12 mA		140		147		169	ps
	16 mA		100		105		120	ps
1.8-V LVTTL	2 mA		420		441		507	ps
	8 mA		350		368		423	ps
	12 mA		350		368		423	ps
1.5-V LVTTL	2 mA		1,740		1,827		2,101	ps
	4 mA		1,160		1,218		1,400	ps
	8 mA		690		725		833	ps
GTL			-150		-157		-181	ps
GTL+			-110		-115		-133	ps
3.3-V PCI			-230		-241		-277	ps
3.3-V PCI-X 1.0)		-230		-241		-277	ps
Compact PCI			-230		-241		-277	ps
AGP 1×			-30		-31		-36	ps
AGP 2×			-30		-31		-36	ps
CTT			50		53		61	ps
SSTL-3 class I			90		95		109	ps
SSTL-3 class II			-50		-52		-60	ps
SSTL-2 class I			100		105		120	ps
SSTL-2 class II			20		21		24	ps
SSTL-18 class	ı		230		242		278	ps
L			1				<u> </u>	L

1.8-V HSTL class II

ps

471

Table 4–96. Stratix I/O Sta	Table 4–96. Stratix I/O Standard Output Delay Adders for Fast Slew Rate on Column Pins (Part 2 of 2)									
Standard	-5 Spee	d Grade	d Grade	Heit						
Stanuaru	Min	Max	Min	Max	Min	Max	Unit			
SSTL-18 class II		0		0		0	ps			
1.5-V HSTL class I		380		399		459	ps			
1.5-V HSTL class II		190		200		230	ps			
1.8-V HSTL class I		380		399		459	ps			

410

390

		-5 Spee	ed Grade	-6 Spe	ed Grade	-7 Spe	ed Grade	
Standa	ard -	Min	Max	Min	Max	Min	Max	Unit
LVCMOS	2 mA		570		599		689	ps
	4 mA		570		599		689	ps
	8 mA		350		368		423	ps
	12 mA		130		137		157	ps
	24 mA		0		0		0	ps
3.3-V LVTTL	4 mA		570		599		689	ps
	8 mA		350		368		423	ps
	12 mA		130		137		157	ps
	16 mA		70		74		85	ps
	24 mA		0		0		0	ps
2.5-V LVTTL	2 mA		830		872		1,002	ps
	8 mA		250		263		302	ps
	12 mA		140		147		169	ps
	16 mA		100		105		120	ps
1.8-V LVTTL	2 mA		1,510		1,586		1,824	ps
	8 mA		420		441		507	ps
	12 mA		350		368		423	ps
1.5-V LVTTL	2 mA		1,740		1,827		2,101	ps
	4 mA		1,160		1,218		1,400	ps
	8 mA		690		725		833	ps
GTL			570		599		689	ps
GTL+			-110		-115		-133	ps
3.3-V PCI			570		599		689	ps

Table 4–97. Stratix I/O S	Standard Outp	out Delay Ad	ders for Fas	st Slew Rate	on Row Pin	s (Part 2 of	2)
Standard	-5 Spec	ed Grade	-6 Spe	ed Grade	-7 Spe	ed Grade	Unit
Stanuaru	Min	Max	Min	Max	Min	Max	Ullit
3.3-V PCI-X 1.0		570		599		689	ps
Compact PCI		570		599		689	ps
AGP 1×		570		599		689	ps
AGP 2×		570		599		689	ps
СТТ		50		53		61	ps
SSTL-3 class I		90		95		109	ps
SSTL-3 class II		-50		-52		-60	ps
SSTL-2 class I		100		105		120	ps
SSTL-2 class II		20		21		24	ps
SSTL-18 class I		230		242		278	ps
SSTL-18 class II		570		599		689	ps
1.5-V HSTL class I		380		399		459	ps
1.5-V HSTL class II		570		599		689	ps
1.8-V HSTL class I		380		399		459	ps
1.8-V HSTL class II		390		410		471	ps
LVDS (1)		-20		-21		-24	ps
LVPECL (1)		40		42		48	ps
PCML (1)		-60		-63		-73	ps
HyperTransport Technology (1)		70		74		85	ps

Table 4–98. S	Table 4–98. Stratix I/O Standard Output Delay Adders for Slow Slew Rate on Column Pins (Part 1 of 2)										
I/O Ston	doud	-5 Spe	ed Grade	-6 Spe	ed Grade	-7 Spee	d Grade	II m i 4			
I/O Stan	luaru -	Min	Max	Min	Max	Min	Max	Unit			
LVCMOS	2 mA		1,911		2,011		2,312	ps			
	4 mA		1,911		2,011		2,312	ps			
	8 mA		1,691		1,780		2,046	ps			
	12 mA		1,471		1,549		1,780	ps			
	24 mA		1,341		1,412		1,623	ps			

Table 4-98. S	tratix I/O Star	ndard Outp	out Delay Add	lers for Slo	w Slew Rate	on Column	Pins (Part 2	? of 2)
1.00		-5 Spe	ed Grade	-6 Spe	ed Grade	-7 Spe	ed Grade	
I/O Stan	dard –	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVTTL	4 mA		1,993		2,097		2,411	ps
	8 mA		1,773		1,866		2,145	ps
	12 mA		1,553		1,635		1,879	ps
	16 mA		1,493		1,572		1,807	ps
	24 mA		1,423		1,498		1,722	ps
2.5-V LVTTL	2 mA		2,631		2,768		3,182	ps
	8 mA		2,051		2,159		2,482	ps
	12 mA		1,941		2,043		2,349	ps
	16 mA		1,901		2,001		2,300	ps
1.8-V LVTTL	2 mA		4,632		4,873		5,604	ps
	8 mA		3,542		3,728		4,287	ps
	12 mA		3,472		3,655		4,203	ps
1.5-V LVTTL	2 mA		6,620		6,964		8,008	ps
	4 mA		6,040		6,355		7,307	ps
	8 mA		5,570		5,862		6,740	ps
GTL			1,191		1,255		1,442	ps
GTL+			1,231		1,297		1,490	ps
3.3-V PCI			1,111		1,171		1,346	ps
3.3-V PCI-X 1.0)		1,111		1,171		1,346	ps
Compact PCI			1,111		1,171		1,346	ps
AGP 1×			1,311		1,381		1,587	ps
AGP 2×			1,311		1,381		1,587	ps
CTT			1,391		1,465		1,684	ps
SSTL-3 class I			1,431		1,507		1,732	ps
SSTL-3 class II			1,291		1,360		1,563	ps
SSTL-2 class I			1,912		2,013		2,314	ps
SSTL-2 class II			1,832		1,929		2,218	ps
SSTL-18 class	I		3,097		3,260		3,748	ps
SSTL-18 class	II		2,867		3,018		3,470	ps
1.5-V HSTL cla	ss I		4,916		5,174		5,950	ps
1.5-V HSTL cla	ss II		4,726		4,975		5,721	ps
1.8-V HSTL cla	ss I		3,247		3,417		3,929	ps
1.8-V HSTL cla	ss II		3,257		3,428		3,941	ps

Table 4–99. S	tratix I/O Star	ndard Outp	out Delay Add	lers for Slo	w Slew Rate	on Row Pil	ns (Part 1 of	2)
1/0.01		-5 Spe	ed Grade	-6 Spe	ed Grade	-7 Spe	ed Grade	
I/O Stan	dard –	Min	Max	Min	Max	Min	Max	Unit
LVCMOS	2 mA		1,930		2,031		2,335	ps
	4 mA		1,930		2,031		2,335	ps
	8 mA		1,710		1,800		2,069	ps
	12 mA		1,490		1,569		1,803	ps
3.3-V LVTTL	4 mA		1,953		2,055		2,363	ps
	8 mA		1,733		1,824		2,097	ps
	12 mA		1,513		1,593		1,831	ps
	16 mA		1,453		1,530		1,759	ps
2.5-V LVTTL	2 mA		2,632		2,769		3,183	ps
	8 mA		2,052		2,160		2,483	ps
	12 mA		1,942		2,044		2,350	ps
	16 mA		1,902		2,002		2,301	ps
1.8-V LVTTL	2 mA		4,537		4,773		5,489	ps
	8 mA		3,447		3,628		4,172	ps
	12 mA		3,377		3,555		4,088	ps
1.5-V LVTTL	2 mA		6,575		6,917		7,954	ps
	4 mA		5,995		6,308		7,253	ps
	8 mA		5,525		5,815		6,686	ps
GTL			1,930		2,031		2,335	ps
GTL+			1,250		1,317		1,513	ps
3.3-V PCI			1,930		2,031		2,335	ps
3.3-V PCI-X 1.0)		1,930		2,031		2,335	ps
Compact PCI			1,930		2,031		2,335	ps
AGP 1×			1,930		2,031		2,335	ps
AGP 2×			1,930		2,031		2,335	ps
CTT			1,410		1,485		1,707	ps
SSTL-3 class I			1,450		1,527		1,755	ps
SSTL-3 class II			1,310		1,380		1,586	ps
SSTL-2 class I			1,797		1,892		2,175	ps
SSTL-2 class II			1,717		1,808		2,079	ps
SSTL-18 class	I		2,477		2,608		2,998	ps
SSTL-18 class	II		2,817		2,965		3,409	ps
1.5-V HSTL cla	ss I		3,629		3,819		4,391	ps

Table 4–99. Stratix I/O Standard Output Delay Adders for Slow Slew Rate on Row Pins (Part 2 of 2)										
I/O Chandand	-5 Spec	-5 Speed Grade		ed Grade	-7 Spe	11:4				
I/O Standard	Min	Max	Min	Max	Min	Max	Unit			
1.5-V HSTL class II		3,819		4,019		4,621	ps			
1.8-V HSTL class I		2,627		2,765		3,179	ps			
1.8-V HSTL class II		2,637		2,776		3,191	ps			
LVDS (1)		1,340		1,411		1,622	ps			
LVPECL (1)		1,400		1,474		1,694	ps			
3.3-V PCML (1)		1,300		1,369		1,573	ps			
HyperTransport (1)		1,430		1,506		1,731	ps			

Note to Tables 4–94 through 4–99:

Tables 4–100 and 4–101 show the adder delays for the column and row IOE programmable delays. These delays are controlled with the Quartus II software options listed in the Parameter column.

Davamatav	Cotting	-5 Speed Grade		-6 Speed Grade		-7 Spee	d Grade	I I mit
Parameter	Setting	Min	Max	Min	Max	Min	Max	Unit
Decrease input delay to	On		2,740		3,014		3,466	ps
internal cells	Small		1,870		2,057		2,365	ps
	Medium		2,230		2,453		2,820	ps
	Large		2,740		3,014		3,466	ps
Decrease input delay to input register	On		3,220		3,542		4,073	ps
Decrease input delay to output register	On		2,470		2,717		3,124	ps
Increase delay to output pin	On		377		397		457	ps
Increase delay to output enable pin	On		530		583		670	ps
Increase output clock	On		1,960		2,156		2,479	ps
	Small		1,040		1,144		1,315	ps
	Large		1,960		2,156		2,479	ps

⁽¹⁾ These parameters are only available on row I/O pins.

Table 4–100. Stratix IO	E Programmai	ble Delays	on Colum	n Pins (P	art 2 of 2)			
Davamatav	Cotting	-5 Speed Grade		-6 Speed Grade		-7 Spee	d Grade	Hait
Parameter	Setting	Min	Max	Min	Max	Min	Max	Unit
Increase input clock	On		1,920		2,112		2,428	ps
enable delay	Small		1,000		1,100		1,265	ps
	Large		1,920		2,112		2,428	ps
Increase output enable	On		1,960		2,156		2,479	ps
clock enable delay	Small		1,040		1,144		1,315	ps
	Large		1,960		2,156		2,479	ps
Increase t _{ZX} delay to output pin	On		-1,112		-1,171		-1,347	ps

Table 4–101. Stratix 10	E Programma	ble Delays	on Row P	ins (Part	1 of 2)			
Davamatav	0.44:	-5 Spec	ed Grade	-6 Spec	ed Grade	-7 Spee	ed Grade	I I m i A
Parameter	Setting	Min	Max	Min	Max	Min	Max	Unit
Decrease input delay to	On		2,740		3,014		3,466	ps
internal cells	Small		1,870		2,057		2,365	ps
	Medium		2,230		2,453		2,820	ps
	Large		2,740		3,014		3,466	ps
Decrease input delay to input register	On		3,220		3,542		4,073	ps
Decrease input delay to output register	On		2,470		2,717		3,124	ps
Increase delay to output pin	On		377		397		457	ps
Increase delay to output enable pin	On		530		583		670	ps
Increase output clock	On		1,960		2,156		2,479	ps
enable delay	Small		1,040		1,144		1,315	ps
	Large		1,960		2,156		2,479	ps
Increase input clock	On		1,920		2,112		2,428	ps
enable delay	Small		1,000		1,100		1,265	ps
	Large		1,920		2,112		2,428	ps

Table 4–101. Stratix IOE Programmable Delays on Row Pins (Part 2 of 2)									
Davamatav	Catting	-5 Speed Grade		e -6 Speed Grade		-7 Speed Grade			
Parameter	Setting	Min	Max	Min	Max	Min	Max	Unit	
Increase output enable	On		1,960		2,156		2,479	ps	
clock enable delay	Small		1,040		1,144		1,315	ps	
	Large		1,960		2,156		2,479	ps	
Increase t _{ZX} delay to output pin	On		-1,109		-1,168		-1,344	ps	

Maximum Input & Output Clock Rates

Tables 4–102 through 4–107 show the maximum input clock rate for column and row pins in Stratix devices.

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	Unit
LVTTL	422	422	390	MHz
2.5 V	422	422	390	MHz
1.8 V	422	422	390	MHz
1.5 V	422	422	390	MHz
LVCMOS	422	422	390	MHz
GTL	300	250	200	MHz
GTL+	300	250	200	MHz
SSTL-3 class I	400	350	300	MHz
SSTL-3 class II	400	350	300	MHz
SSTL-2 class I	400	350	300	MHz
SSTL-2 class II	400	350	300	MHz
SSTL-18 class I	400	350	300	MHz
SSTL-18 class II	400	350	300	MHz
1.5-V HSTL class I	400	350	300	MHz
1.5-V HSTL class II	400	350	300	MHz
1.8-V HSTL class I	400	350	300	MHz
1.8-V HSTL class II	400	350	300	MHz
3.3-V PCI	420	381	347	MHz
3.3-V PCI-X 1.0	420	381	347	MHz

Table 4–102. Stratix Maximum Input Clock Rate for CLK[7..4] & CLK[15..12] Pins in Flip-Chip Packages (Part 2 of 2)

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	Unit
Compact PCI	420	381	347	MHz
AGP 1×	303	303	261	MHz
AGP 2×	303	303	261	MHz
CTT	300	250	200	MHz
Differential HSTL	400	350	300	MHz
LVDS (1)	645	645	622	MHz
LVPECL (1)	645	645	622	MHz
PCML (1)	300	275	275	MHz
HyperTransport technology (1)	500	500	450	MHz

Table 4–103. Stratix Maximum Input Clock Rate for CLK[0, 2, 9, 11] Pins in Flip-Chip Packages (Part 1 of 2)

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	Unit
LVTTL	422	422	390	MHz
2.5 V	422	422	390	MHz
1.8 V	422	422	390	MHz
1.5 V	422	422	390	MHz
LVCMOS	422	422	390	MHz
GTL	300	250	200	MHz
GTL+	300	250	200	MHz
SSTL-3 class I	400	350	300	MHz
SSTL-3 class II	400	350	300	MHz
SSTL-2 class I	400	350	300	MHz
SSTL-2 class II	400	350	300	MHz
SSTL-18 class I	400	350	300	MHz
SSTL-18 class II	400	350	300	MHz
1.5-V HSTL class I	400	350	300	MHz
1.5-V HSTL class II	400	350	300	MHz
1.8-V HSTL class I	400	350	300	MHz
1.8-V HSTL class II	400	350	300	MHz
3.3-V PCI	420	381	347	MHz

Table 4–103. Stratix Maximum Input Clock Rate for CLK[0, 2, 9, 11] Pins in Flip-Chip Packages (Part 2 of 2)

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	Unit
3.3-V PCI-X 1.0	420	381	347	MHz
Compact PCI	420	381	347	MHz
AGP 1×	303	303	261	MHz
AGP 2×	303	303	261	MHz
СТТ	300	250	200	MHz
Differential HSTL	400	350	300	MHz
LVDS (1)	717	717	640	MHz
LVPECL (1)	717	717	640	MHz
PCML (1)	400	375	350	MHz
HyperTransport technology (1)	717	717	640	MHz

Table 4–104. Stratix Maximum Input Clock Rate for CLK[1, 3, 8, 10] Pins in Flip-Chip Packages (Part 1 of 2)

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	Unit
LVTTL	375	325	275	MHz
2.5 V	375	325	275	MHz
1.8 V	375	325	275	MHz
1.5 V	375	325	275	MHz
LVCMOS	375	325	275	MHz
GTL	300	250	200	MHz
GTL+	300	250	200	MHz
SSTL-3 class I	350	300	250	MHz
SSTL-3 class II	350	300	250	MHz
SSTL-2 class I	350	300	250	MHz
SSTL-2 class II	350	300	250	MHz
SSTL-18 class I	350	300	250	MHz
SSTL-18 class II	350	300	250	MHz
1.5-V HSTL class I	350	300	250	MHz
1.5-V HSTL class II	350	300	250	MHz
1.8-V HSTL class I	350	300	250	MHz
1.8-V HSTL class II	350	300	250	MHz

Table 4–104. Stratix Maximum Input Clock Rate for CLK[1, 3, 8, 10] Pins in Flip-Chip Packages (Part 2 of 2)

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	Unit
3.3-V PCI	375	325	275	MHz
3.3-V PCI-X 1.0	375	325	275	MHz
Compact PCI	375	325	275	MHz
AGP 1×	375	325	275	MHz
AGP 2×	375	325	275	MHz
CTT	300	250	200	MHz
Differential HSTL	350	300	250	MHz
LVDS (1)	500	422	311	MHz
LVPECL (1)	311	311	311	MHz
PCML (1)	275	250	175	MHz
HyperTransport technology (1)	350	350	350	MHz

Table 4–105. Stratix Maximum Input Clock Rate for CLK[7..4] & CLK[15..12] Pins in Wire-Bond Packages (Part 1 of 2) Note (2)

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	Unit
LVTTL		422	390	MHz
2.5 V		422	390	MHz
1.8 V		422	390	MHz
1.5 V		422	390	MHz
LVCMOS		422	390	MHz
GTL		250	200	MHz
GTL+		250	200	MHz
SSTL-3 class I		300	250	MHz
SSTL-3 class II		300	250	MHz
SSTL-2 class I		300	250	MHz
SSTL-2 class II		300	250	MHz
SSTL-18 class I		300	250	MHz
SSTL-18 class II		300	250	MHz
1.5-V HSTL class I		300	180	MHz
1.5-V HSTL class II		300	180	MHz
1.8-V HSTL class I		300	180	MHz

Table 4–105. Stratix Maximum Input Clock Rate for CLK[7..4] & CLK[15..12] Pins in Wire-Bond Packages (Part 2 of 2) Note (2)

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	Unit
1.8-V HSTL class II		300	180	MHz
3.3-V PCI		381	347	MHz
3.3-V PCI-X 1.0		381	347	MHz
Compact PCI		381	347	MHz
AGP 1×		303	261	MHz
AGP 2×		303	261	MHz
СТТ		250	180	MHz
Differential HSTL		300	180	MHz
LVDS (1)		422	400	MHz
LVPECL (1)		422	400	MHz
PCML (1)		215	200	MHz
HyperTransport technology (1)		422	400	MHz

Table 4–106. Stratix Maximum Input Clock Rate for CLK[0, 2, 9, 11] Pins in Wire-Bond Packages (Part 1 of 2) Note (2)

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	Unit
LVTTL		422	390	MHz
2.5 V		422	390	MHz
1.8 V		422	390	MHz
1.5 V		422	390	MHz
LVCMOS		422	390	MHz
GTL		250	200	MHz
GTL+		250	200	MHz
SSTL-3 class I		350	300	MHz
SSTL-3 class II		350	300	MHz
SSTL-2 class I		350	300	MHz
SSTL-2 class II		350	300	MHz
SSTL-18 class I		350	300	MHz
SSTL-18 class II		350	300	MHz
1.5-V HSTL class I		350	300	MHz
1.5-V HSTL class II		350	300	MHz

Table 4–106. Stratix Maximum Input Clock Rate for CLK[0, 2, 9, 11] Pins in Wire-Bond Packages (Part 2 of 2) Note (2)

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	Unit
1.8-V HSTL class I		350	300	MHz
1.8-V HSTL class II		350	300	MHz
3.3-V PCI		381	347	MHz
3.3-V PCI-X 1.0		381	347	MHz
Compact PCI		381	347	MHz
AGP 1×		303	261	MHz
AGP 2×		303	261	MHz
СТТ		250	200	MHz
Differential HSTL		350	300	MHz
LVDS (1)		717	640	MHz
LVPECL (1)		717	640	MHz
PCML (1)		375	350	MHz
HyperTransport technology (1)		717	640	MHz

Table 4–107. Stratix Maximum Input Clock Rate for CLK[1, 3, 8, 10] Pins in Wire-Bond Packages (Part 1 of 2) Note (2)

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	Unit
LVTTL		210	175	MHz
2.5 V		210	175	MHz
1.8 V		210	175	MHz
1.5 V		210	175	MHz
LVCMOS		210	175	MHz
GTL		180	150	MHz
GTL+		180	150	MHz
SSTL-3 class I		200	185	MHz
SSTL-3 class II		200	185	MHz
SSTL-2 class I		200	185	MHz
SSTL-2 class II		200	185	MHz
SSTL-18 class I		200	185	MHz
SSTL-18 class II		200	185	MHz
1.5-V HSTL class I		200	185	MHz

Table 4–107. Stratix Maximum Input Clock Rate for CLK[1, 3, 8, 10] Pins in Wire-Bond Packages (Part 2 of 2) Note (2) -5 Speed -6 Speed -7 Speed I/O Standard Unit Grade Grade Grade 1.5-V HSTL class II 200 185 MHz 1.8-V HSTL class I 200 185 MHz 1.8-V HSTL class II 200 185 MHz 3.3-V PCI 175 MHz 210 3.3-V PCI-X 1.0 210 175 MHz 175 MHz Compact PCI 210 AGP 1× 210 175 MHz AGP 2× 210 175 MHz CTT 200 250 MHz Differential HSTL 200 185 MHz LVDS (1) 311 275 MHz LVPECL (1) 311 275 MHz PCML (1) 200 175 MHz **HyperTransport** 311 275 MHz technology (1)

Notes to Tables 4–102 through 4–107:

- (1) These parameters are only available on row I/O pins.
- (2) The -5 speed grade is not available in wire-bond packages.

Tables 4–108 through 4–111 show the maximum output clock rate for column and row pins in Stratix devices.

Table 4–108. Stratix Maximum Output Clock Rate for PLL[5, 6, 11, 12] Pins in Flip-Chip Packages (Part 1 of 2)				
I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	Unit
LVTTL	350	300	250	MHz
2.5 V	350	300	300	MHz
1.8 V	250	250	250	MHz
1.5 V	225	200	200	MHz
LVCMOS	350	300	250	MHz
GTL	200	167	125	MHz
GTL+	200	167	125	MHz
SSTL-3 class I	167	150	133	MHz

Table 4–108. Stratix Maximum Output Clock Rate for PLL[5, 6, 11, 12] Pins in Flip-Chip Packages (Part 2 of 2)

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	Unit
SSTL-3 class II	167	150	133	MHz
SSTL-2 class I	200	200	167	MHz
SSTL-2 class II	200	200	167	MHz
SSTL-18 class I	150	133	133	MHz
SSTL-18 class II	150	133	133	MHz
1.5-V HSTL class I	250	225	200	MHz
1.5-V HSTL class II	250	200	200	MHz
1.8-V HSTL class I	250	225	200	MHz
1.8-V HSTL class II	250	200	200	MHz
3.3-V PCI	350	300	250	MHz
3.3-V PCI-X 1.0	350	300	250	MHz
Compact PCI	350	300	250	MHz
AGP 1×	350	300	250	MHz
AGP 2×	350	300	250	MHz
CTT	200	200	200	MHz
Differential HSTL	225	200	200	MHz
Differential SSTL-2 (1)	200	200	167	MHz
LVDS (2)	500	500	500	MHz
LVPECL (2)	500	500	500	MHz
PCML (2)	350	350	350	MHz
HyperTransport technology (2)	350	350	350	MHz

Table 4–109. Stratix Maximum Output Clock Rate for PLL[1, 2, 3, 4] Pins in Flip-Chip Packages (Part 1 of 2)

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	Unit
LVTTL	400	350	300	MHz
2.5 V	400	350	300	MHz
1.8 V	400	350	300	MHz
1.5 V	350	300	300	MHz
LVCMOS	350	300	300	MHz
GTL	200	167	125	MHz

Table 4–109. Stratix Maximum Output Clock Rate for PLL[1, 2, 3, 4] Pins in Flip-Chip Packages (Part 2 of 2)

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	Unit
GTL+	200	167	125	MHz
SSTL-3 class I	167	150	133	MHz
SSTL-3 class II	167	150	133	MHz
SSTL-2 class I	150	133	133	MHz
SSTL-2 class II	150	133	133	MHz
SSTL-18 class I	150	133	133	MHz
SSTL-18 class II	150	133	133	MHz
HSTL class I	250	225	200	MHz
HSTL class II	225	225	200	MHz
3.3-V PCI	400	350	300	MHz
3.3-V PCI-X 1.0	400	350	300	MHz
Compact PCI	400	350	300	MHz
AGP 1×	400	350	300	MHz
AGP 2×	400	350	300	MHz
CTT	400	350	300	MHz
Differential HSTL	225	225	200	MHz
Differential SSTL-2 (1)	200	200	167	MHz
LVDS (2)	500	500	500	MHz
LVPECL (2)	500	500	500	MHz
PCML (2)	420	420	420	MHz
HyperTransport technology (2)	420	420	420	MHz

Table 4–110. Stratix Maximum Output Clock Rate for PLL[5, 6, 11, 12] Pins in Wire-Bond Packages (Part 1 of 2) Note (3)

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	Unit
LVTTL		175	150	MHz
2.5 V		175	150	MHz
1.8 V		175	150	MHz
1.5 V		175	150	MHz
LVCMOS		175	150	MHz
GTL		125	100	MHz

Table 4–110. Stratix Maximum Output Clock Rate for PLL[5, 6, 11, 12] Pins in Wire-Bond Packages (Part 2 of 2) Note (3)

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	Unit
GTL+		125	100	MHz
SSTL-3 class I		110	90	MHz
SSTL-3 class II		133	125	MHz
SSTL-2 class I		166	133	MHz
SSTL-2 class II		133	100	MHz
SSTL-18 class I		110	100	MHz
SSTL-18 class II		110	100	MHz
HSTL class I		167	167	MHz
HSTL class II		167	133	MHz
3.3-V PCI		175	150	MHz
3.3-V PCI-X 1.0		175	150	MHz
Compact PCI		175	150	MHz
AGP 1×		175	150	MHz
AGP 2×		175	150	MHz
CTT		125	100	MHz
Differential HSTL		167	133	MHz
Differential SSTL-2 (1)		110	100	MHz
LVDS (2)		311	275	MHz
LVPECL (2)		311	275	MHz
PCML (2)		250	200	MHz
HyperTransport technology (2)		311	275	MHz

Table 4–111. Stratix Maximum Output Clock Rate for PLL[1, 2, 3, 4] Pins in Wire-Bond Packages (Part 1 of 2) Note (3)

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	Unit
LVTTL		200	175	MHz
2.5 V		200	175	MHz
1.8 V		200	175	MHz
1.5 V		200	175	MHz
LVCMOS		200	175	MHz
GTL		125	100	MHz

Table 4–111. Stratix Maximum Output Clock Rate for PLL[1, 2, 3, 4] Pins in Wire-Bond Packages (Part 2 of 2) Note (3)

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	Unit
GTL+		125	100	MHz
SSTL-3 class I		110	90	MHz
SSTL-3 class II		150	133	MHz
SSTL-2 class I		90	80	MHz
SSTL-2 class II		110	100	MHz
SSTL-18 class I		110	100	MHz
SSTL-18 class II		110	100	MHz
1.5-V HSTL class I		225	200	MHz
1.5-V HSTL class II		200	167	MHz
1.8-V HSTL class I		225	200	MHz
1.8-V HSTL class II		200	167	MHz
3.3-V PCI		200	175	MHz
3.3-V PCI-X 1.0		200	175	MHz
Compact PCI		200	175	MHz
AGP 1×		200	175	MHz
AGP 2×		200	175	MHz
СТТ		125	100	MHz
Differential HSTL		200	167	MHz
Differential SSTL-2 (1)		110	100	MHz
LVDS (2)		400	311	MHz
LVPECL (1)		400	311	MHz
PCML (1)		250	250	MHz
HyperTransport technology (1)		420	400	MHz

Notes to Tables 4–108 through 4–111:

- (1) Differential SSTL-2 outputs are only available on column I/O pins.
- (2) These parameters are only available on row I/O pins.
- (3) The -5 speed grade is not available in wire-bond packages.

High-Speed I/O Timing

Table 4–112 provides high-speed timing specifications definitions.

Table 4–112. High-Speed Timing S	necifications & Terminology
High-Speed Timing Specification	Terminology
t_{C}	High-speed receiver/transmitter input and output clock period.
f _{HSCLK}	High-speed receiver/transmitter input and output clock frequency.
t _{RISE}	Low-to-high transmission time.
t _{FALL}	High-to-low transmission time.
Timing unit interval (TUI)	The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(Receiver\ Input\ Clock\ Frequency \times Multiplication\ Factor) = t_C/w)$.
f _{HSDR}	Maximum LVDS data transfer rate (f _{HSDR} = 1/TUI).
Channel-to-channel skew (TCCS)	The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew. The clock is included in the TCCS measurement.
Sampling window (SW)	The period of time during which the data must be valid in order for you to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window. $SW = t_{SW} \; (\text{max}) - t_{SW} \; (\text{min}).$
Input jitter (peak-to-peak)	Peak-to-peak input jitter on high-speed PLLs.
Output jitter (peak-to-peak)	Peak-to-peak output jitter on high-speed PLLs.
t _{DUTY}	Duty cycle on high-speed transmitter output clock.
t _{LOCK}	Lock time for high-speed transmitter and receiver PLLs.

Tables 4–113 and 4–114 show the high-speed I/O timing for Stratix devices.

Table 4–113. H	igh-Speed I/O Sp	ecificat	ions fo	r Flip-Cl	ip Pacl	kages (Part 1 o	f 2)	Notes ((1), (2)	
Cumbal	Conditions	-5 S	-5 Speed Grade			peed G	rade	-7 S	peed G	rade	Unit
Symbol	Collultions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIII
f _{HSCLK} (Clock	<i>W</i> = 10	30		84	30		84	30		62.4	MHz
frequency)	W = 8	37.5		105	37.5		105	37.5		78	MHz
(LVDS, LVPECL,	W = 7	42.9		120	42.9		120	42.9		89.14	MHz
HyperTransport	W = 4	75		210	75		210	75		156	MHz
technology)	W = 2	150		420	150		420	150		231	MHz
	W = 1 (LVDS and LVPECL only)	300		717	300		717	300		462	MHz
f _{HSDR} Device	J = 10	300		840	300		840	300		624	Mbps
operation	J = 8	300		840	300		840	300		624	Mbps
(LVDS, LVPECL,	J = 7	300		840	300		840	300		624	Mbps
HyperTransport	J = 4	300		840	300		840	300		624	Mbps
technology)	J = 2	100		462	100		462	100		462	Mbps
	J = 1 (LVDS and LVPECL only)	100		462	100		462	100		462	Mbps
f _{HSCLK} (Clock	W = 10	30		40	30		40	30		31.1	MHz
frequency) (PCML)	W = 8	37.5		50	37.5		50	37.5		38.87	MHz
(PCIVIL)	W = 7	42.9		57.14	42.9		57.14	42.9		44.43	MHz
	W = 4	75		100	75		100	75		77.75	MHz
	W = 2	50		200	50		200	50		150	MHz
	W = 1	100		250	100		250	100		200	MHz
f _{HSDR} Device	J = 10	300		400	300		400	300		311	Mbps
operation	J = 8	300		400	300		400	300		311	Mbps
(PCML)	J = 7	300		400	300		400	300		311	Mbps
	J = 4	300		400	300		400	300		311	Mbps
	J = 2	100		400	100		400	100		300	Mbps
	J = 1	100		250	100		250	100		200	Mbps
TCCS	All			±100			±100			±150	ps

Table 4–113. H	ligh-Speed I/O Sp	ecificat	ions fo	Flip-Ch	ip Pacl	kages (Part 2 o	f 2)	Notes (1), (2)	
0	0	-5 S	peed G	rade	-6 S	peed G	rade	-7 S	peed G	rade	1124
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SW	PCML (<i>J</i> = 4, 7, 8, 10)			750			750			800	ps
	PCML (<i>J</i> = 2)			900			900			1,200	ps
	PCML (<i>J</i> = 1)			1,500			1,500			1,700	ps
	LVDS and LVPECL (J = 1)			500			500			550	ps
	LVDS, LVPECL, HyperTransport technology (<i>J</i> = 2 through 10)			440			440			500	ps
Input jitter tolerance (peak-to-peak)	All			250			250			250	ps
Output jitter (peak-to-peak)	All			160			160			200	ps
Output t _{RISE}	LVDS	80	110	120	80	110	120	80	110	120	ps
	HyperTransport technology	110	170	200	110	170	200	120	170	200	ps
	LVPECL	90	130	150	90	130	150	100	135	150	ps
	PCML	80	110	135	80	110	135	80	110	135	ps
Output t _{FALL}	LVDS	80	110	120	80	110	120	80	110	120	ps
	HyperTransport technology	110	170	200	110	170	200	110	170	200	ps
	LVPECL	90	130	160	90	130	160	100	135	160	ps
	PCML	105	140	175	105	140	175	110	145	175	ps
t _{DUTY}	LVDS (J = 2 through 10)	47.5	50	52.5	47.5	50	52.5	47.5	50	52.5	%
	LVDS (J=1) and LVPECL, PCML, HyperTransport technology	45	50	55	45	50	55	45	50	55	%
t _{LOCK}	All			100			100			100	μS

Notes for Table 4–113:
(1) When J = 4,7,8, and 10, the SERDES block is used.
(2) When J = 2 or J = 1, the SERDES is bypassed.

Table 4–114. Hi	gh-Speed I/O Specificati	ons for W	ire-Bond	Packages	(Part 1	of 2)		
O	Conditions	-6 \$	Speed Gr	ade	-7 \$	Speed G	rade	I I mia
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
f _{HSCLK} (clock	W = 10	30		62.4	30		46	MHz
frequency) (LVDS,LVPECL,	W = 8	37.5		78	37.5		57.5	MHz
HyperTransport	W = 7	42.9		89.14	42.9		65.71	MHz
technology)	W = 4	75		156	75		115	MHz
	W = 2	50		231	50		230	MHz
Device	W = 1 (LVDS and LVPECL only)	100		311	100		311	MHz
Device	J = 10	300		624	300		460	Mbps
operation, f _{HSDR} (LVDS,LVPECL,	J = 8	300		624	300		460	Mbps
HyperTransport	J = 7	300		624	300		460	Mbps
technology)	J = 4	300		624	300		460	Mbps
	J = 2	100		462	100		460	Mbps
	J = 1 (LVDS and LVPECL only)	100		311	100		270	Mbps
f _{HSCLK} (clock	W = 10	30		31.1				MHz
frequency)	W = 8	37.5		38.87				MHz
(PCML)	W = 7	42.9		44.43				MHz
	W = 4	75		77.75				MHz
	W = 2	50		150	50		150	MHz
	W = 1	100		200	100		200	MHz
Device	J = 10	300		311				Mbps
operation, f _{HSDR}	J = 8	300		311				Mbps
(PCML)	J = 7	300		311				Mbps
	J = 4	300		311				Mbps
	J = 2	100		300	100		155	Mbps
	J = 1	100		200	100		155	Mbps
TCCS	All			± 200			± 200	ps

0	0	-6 \$	Speed Gr	ade	-7 \$	Speed G	eed Grade	
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
SW	PCML (J = 4, 7, 8, 10) only			800			800	ps
	PCML (J = 2) only			1,200			1,200	ps
	PCML (J = 1) only			1,700			1,700	ps
	LVDS and LVPECL (J = 1) only			550			550	ps
	LVDS, LVPECL, HyperTransport technology (J = 210) only			500			500	ps
Input jitter tolerance (peak- to-peak)	All			250			250	ps
Output jitter (peak-to-peak)	All			200			200	ps
Output t _{RISE}	LVDS	80	110	120	80	110	120	ps
	HyperTransport technology	120	170	200	120	170	200	ps
	LVPECL	100	135	150	100	135	150	ps
	PCML	80	110	135	80	110	135	ps
Output t _{FALL}	LVDS	80	110	120	80	110	120	ps
	HyperTransport	110	170	200	110	170	200	ps
	LVPECL	100	135	160	100	135	160	ps
	PCML	110	145	175	110	145	175	ps
t _{DUTY}	LVDS (J =210) only	47.5	50	52.5	47.5	50	52.5	%
	LVDS (J =1) and LVPECL, PCML, HyperTransport technology	45	50	55	45	50	55	%
t _{LOCK}	All			100			100	us

PLL Timing

Tables 4–115 and 4–116 describe the Stratix device enhanced PLL specifications.

Symbol	Parameter	Min	Тур	Max	Unit
f _{IN}	Input clock frequency	3 (1)		462	MHz
f _{INDUTY}	Input clock duty cycle	40		60	%
f _{EINDUTY}	External feedback clock input duty cycle	40		60	%
t _{INJITTER}	Input clock cycle-to-cycle jitter			±200	ps
t _{EINJITTER}	External feedback clock cycle-to-cycle jitter			±200	ps
t _{FCOMP}	External feedback clock compensation time (2)			6	ns
f _{OUT}	PLL output frequency	0.6		462	MHz
t _{OUTDUTY}	Duty cycle for external clock output (when set to 50%)	45		55	%
t _{JITTER}	Cycle-to-cycle jitter for external or internal global or regional clock output (3)			±100 ps or ±15 mUI, whichever is higher	ps or mUI
t _{CONFIG5,6}	Time required to reconfigure the scan chains for PLLs 5 and 6			289/f _{SCANCLK}	
t _{CONFIG11,12}	Time required to reconfigure the scan chains for PLLs 11 and 12			193/f _{SCANCLK}	
t _{SCANCLK}	scanclk frequency (4)			33	MHz
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) (5)	(6)		100	μS
t _{LOCK}	Time required to lock from end of device configuration	10		1,000	μS
f _{VCO}	PLL internal VCO operating range	300		800	MHz
t _{LSKEW}	Clock skew between two external clock outputs driven by the same counter		±50		ps
t _{SKEW}	Clock skew between two external clock outputs driven by the different counters with the same settings		±75		ps

Table 4–115. Enhanced PLL Specifications for -5 & -6 Speed Grades (Part 2 of 2)						
Symbol	Parameter	Min	Тур	Max	Unit	
f _{SS}	Spread spectrum modulation frequency	30		150	kHz	
% spread	Percentage spread for spread spectrum frequency (7)	0	0.5		%	

Symbol	Parameter	Min	Тур	Max	Unit
f _{IN}	Input clock frequency	3 (1)		462	MHz
f _{INDUTY}	Input clock duty cycle	40		60	%
f _{EINDUTY}	External feedback clock input duty cycle	40		60	%
t _{INJITTER}	Input clock cycle-to-cycle jitter			±200	ps
t _{EINJITTER}	External feedback clock cycle-to-cycle jitter			±200	ps
t _{FCOMP}	External feedback clock compensation time (2)			6	ns
f _{OUT}	PLL output frequency	0.6		462	MHz
t _{OUTDUTY}	Duty cycle for external clock output (when set to 50%)	45		55	%
t _{JITTER}	Cycle-to-cycle jitter for external or internal global or regional clock output (3)			±100 ps or ±15 mUI, whichever is higher	ps or mUI
t _{CONFIG5,6}	Time required to reconfigure the scan chains for PLLs 5 and 6			289/f _{SCANCLK}	
t _{CONFIG11,12}	Time required to reconfigure the scan chains for PLLs 11 and 12			193/f _{SCANCLK}	
t _{SCANCLK}	scanclk frequency (4)			100	MHz
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) (5)	(6)		100	μS
t _{LOCK}	Time required to lock from end of device configuration	10		1,000	μS
f _{VCO}	PLL internal VCO operating range	300		600	MHz
t _{LSKEW}	Clock skew between two external clock outputs driven by the same counter		±50		ps
t _{SKEW}	Clock skew between two external clock outputs driven by the different counters with the same settings		±75		ps

Table 4–116. Enhanced PLL Specifications for -7 Speed Grade (Part 2 of 2)						
Symbol	Parameter	Min	Тур	Max	Unit	
f _{SS}	Spread spectrum modulation frequency	30		150	kHz	
% spread	Percentage spread for spread spectrum frequency (7)	0	0.5		%	

Notes to Table 4–115 and 4–116:

- (1) The minimum input clock frequency to the PFD ($f_{\rm IN}/N$) must be at least 3 Mhz for Stratix and Stratix GX device enhanced PLLs.
- (2) t_{FCOMP} can also equal 50% of the input clock period multiplied by the pre-scale divider *n* (whichever is less).
- (3) Actual jitter performance may vary based on the system configuration.
- (4) This parameter is timing analyzed by the Quartus II software because the scanclk and scandata ports can be driven by the logic array.
- (5) Total required time to reconfigure and lock is equal to t_{DLOCK} + t_{CONFIG}. If only post-scale counters and delays are changed, then t_{DLOCK} is equal to 0.
- (6) Lock time is a function of PLL configuration and may be significantly faster depending on bandwidth settings or feedback counter change increment.
- (7) Exact, user-controllable value depends on the PLL settings.

Table 4–117 and 4–118 describe the Stratix and Stratix GX device fast PLL specifications.

Table 4–117. Fa	Table 4–117. Fast PLL Specifications for -5 & -6 Speed Grades (Part 1 of 2) Note (1)					
Symbol	Parameter	Min	Max	Unit		
f _{IN}	CLKIN frequency (for $m = 1$) (2), (3)	300	717	MHz		
	CLKIN frequency (for $m = 2$ to 19)	300/m	1,000/ <i>m</i>	MHz		
	CLKIN frequency (for $m = 20$ to 32)	15	1,000/ <i>m</i>	MHz		
f _{OUT}	Output frequency for internal global or regional clock (4)	9.375	420	MHz		
f _{OUT_EXT}	Output frequency for external clock (3)	9.375	717	MHz		
f _{VCO}	VCO operating frequency	300	1,000	MHz		
t _{INDUTY}	CLKIN duty cycle	40	60	%		
t _{INJITTER}	Cycle-to-cycle jitter for CLKIN pin		±200	ps		
t _{DUTY}	Duty cycle for DFFIO 1× CLKOUT pin (5)	45	55	%		
t _{JITTER}	Cycle-to-cycle jitter for DIFFIO clock out (5)		±80	ps		
	Cycle-to-cycle jitter for internal global or regional clock		±100 ps or ±15 mUI, whichever is higher	ps or mUI		
t _{LOCK}	Time required for PLL to acquire lock	10	100	μS		

Table 4–117. Fast PLL Specifications for -5 & -6 Speed Grades (Part 2 of 2) Note (1)						
Symbol	Parameter	Min	Max	Unit		
m	Multiplication factors for <i>m</i> counter (6)	1	32	Integer		
10, 11, g0	Multiplication factors for 10, 11, and g0 counter (6), (7)	1	32	Integer		

Table 4–118. Fast PLL Specifications for -7 Speed Grade Note (1)					
Symbol	Parameter	Min	Max	Unit	
f _{IN}	CLKIN frequency (for $m = 1$) (2), (3)	300	460	MHz	
	CLKIN frequency (for $m = 2$ to 19)	300/m	700/m	MHz	
	CLKIN frequency (for $m = 20$ to 32)	15	700/m	MHz	
f _{OUT}	Output frequency for internal global or regional clock (4)	9.375	420	MHz	
f _{OUT_EXT}	Output frequency for external clock (3)	9.375	460	MHz	
f _{VCO}	VCO operating frequency	300	700	MHz	
t _{INDUTY}	CLKIN duty cycle	40	60	%	
t _{INJITTER}	Cycle-to-cycle jitter for CLKIN pin		±200	ps	
t _{DUTY}	Duty cycle for DFFIO 1× CLKOUT pin (5)	45	55	%	
t _{JITTER}	Cycle-to-cycle jitter for DIFFIO clock out (5)		±80	ps	
	Cycle-to-cycle jitter for internal global or regional clock		±100 ps or ±15 mUI, whichever is higher	ps or mUI	
t _{LOCK}	Time required for PLL to acquire lock	10	100	μS	
m	Multiplication factors for <i>m</i> counter (6)	1	32	Integer	
10, 11, g0	Multiplication factors for IO, I1, and g0 counter (6), (7)	1	32	Integer	

Notes to Table 4–117 and Table 4–118:

- PLLs 3, 4, 9, and 10 on Stratix GX devices are only used for the HSSI block. These PLLs are not available for generalpurpose programming.
- (2) PLLs 7, 8, 9, and 10 support up to 717-MHz input clock frequency on FPLL[7..10]clk pins using differential standards. PLLs 1, 2, 3, and 4 support up to 717-MHz input clock frequency on the CLK0, CLK2, CLK9, and CLK11 pins using differential standards. All other clock inputs support 462 MHz using differential standards. See "Maximum Input & Output Clock Rates" on page 4–63
- (3) PLLs 7, 8, 9, and 10 in the EP1S80 device support up to 462-MHz input and output.
- (4) When using the SERDES, high-speed differential I/O mode supports a maximum output frequency of 210 MHz to the global or regional clocks (i.e., the maximum data rate 840 Mbps divided by the smallest SERDES J factor of 4).
- (5) This parameter is for high-speed differential I/O mode only.
- (6) These counters have a maximum of 32 if programmed for 50/50 duty cycle. Otherwise, they have a maximum of 16.
- (7) High-speed differential I/O mode supports W = 1 to 16 and J = 4, 7, 8, or 10.

5. Reference & Ordering Information

\$51005-1.0

Chapter 5, Reference & Ordering Information, replaces the Stratix Family Data Sheet.

Software

Stratix devices are supported by the Altera Quartus II design software, which provides a comprehensive environment for system-on-a-programmable-chip (SOPC) design. The Quartus II software includes HDL and schematic design entry, compilation and logic synthesis, full simulation and advanced timing analysis, SignalTap[®] II logic analyzer, and device configuration. See the *Design Software Selector Guide* for more details on the Quartus II software features.

The Quartus II software supports the Windows XP/2000/NT/98, Sun Solaris, Linux Red Hat v7.1 and HP-UX operating systems. It also supports seamless integration with industry-leading EDA tools through the NativeLink® interface.

Device Pin-Outs

Printed Device pin-outs for Stratix devices can be found in this handbook in Section II, PCB Layout Guidelines and are also available on the Altera web site at (www.altera.com).

Ordering Information

Figure 5–1 describes the ordering codes for Stratix devices. For more information on a specific package, refer to the Chapter 8, Package Information for Stratix Devices.

1508 ES **Family Signature Optional Suffix** EP1S: Stratix Indicates specific device options or shipment method. ES: Engineering sample **Device Type** 10 Speed Grade 20 5, 6, or 7, with 5 being the fastest 25 30 40 60 **Operating Temperature** 80 C: Commercial temperature ($t_J = 0^{\circ}$ C to 85° C) I: Industrial temperature ($t_J = -40^{\circ}$ C to 100° C) Package Type Pin Count B: Ball-grid array (BGA) Number of pins for a particular BGA or FineLine BGA package F: FineLine BGA

Figure 5-1. Stratix Device Packaging Ordering Information